53,393 research outputs found

    Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference

    Full text link
    Mutation analysis can effectively capture the dependency between source code and test results. This has been exploited by Mutation Based Fault Localisation (MBFL) techniques. However, MBFL techniques suffer from the need to expend the high cost of mutation analysis after the observation of failures, which may present a challenge for its practical adoption. We introduce SIMFL (Statistical Inference for Mutation-based Fault Localisation), an MBFL technique that allows users to perform the mutation analysis in advance against an earlier version of the system. SIMFL uses mutants as artificial faults and aims to learn the failure patterns among test cases against different locations of mutations. Once a failure is observed, SIMFL requires either almost no or very small additional cost for analysis, depending on the used inference model. An empirical evaluation of SIMFL using 355 faults in Defects4J shows that SIMFL can successfully localise up to 103 faults at the top, and 152 faults within the top five, on par with state-of-the-art alternatives. The cost of mutation analysis can be further reduced by mutation sampling: SIMFL retains over 80% of its localisation accuracy at the top rank when using only 10% of generated mutants, compared to results obtained without sampling

    Semantic mutation testing

    Get PDF
    This is the Pre-print version of the Article. The official published version can be obtained from the link below - Copyright @ 2011 ElsevierMutation testing is a powerful and flexible test technique. Traditional mutation testing makes a small change to the syntax of a description (usually a program) in order to create a mutant. A test suite is considered to be good if it distinguishes between the original description and all of the (functionally non-equivalent) mutants. These mutants can be seen as representing potential small slips and thus mutation testing aims to produce a test suite that is good at finding such slips. It has also been argued that a test suite that finds such small changes is likely to find larger changes. This paper describes a new approach to mutation testing, called semantic mutation testing. Rather than mutate the description, semantic mutation testing mutates the semantics of the language in which the description is written. The mutations of the semantics of the language represent possible misunderstandings of the description language and thus capture a different class of faults. Since the likely misunderstandings are highly context dependent, this context should be used to determine which semantic mutants should be produced. The approach is illustrated through examples with statecharts and C code. The paper also describes a semantic mutation testing tool for C and the results of experiments that investigated the nature of some semantic mutation operators for C

    An Evolutionary Algorithm to Optimize Log/Restore Operations within Optimistic Simulation Platforms

    Get PDF
    In this work we address state recoverability in advanced optimistic simulation systems by proposing an evolutionary algorithm to optimize at run-time the parameters associated with state log/restore activities. Optimization takes place by adaptively selecting for each simulation object both (i) the best suited log mode (incremental vs non-incremental) and (ii) the corresponding optimal value of the log interval. Our performance optimization approach allows to indirectly cope with hidden effects (e.g., locality) as well as cross-object effects due to the variation of log/restore parameters for different simulation objects (e.g., rollback thrashing). Both of them are not captured by literature solutions based on analytical models of the overhead associated with log/restore tasks. More in detail, our evolutionary algorithm dynamically adjusts the log/restore parameters of distinct simulation objects as a whole, towards a well suited configuration. In such a way, we prevent negative effects on performance due to the biasing of the optimization towards individual simulation objects, which may cause reduced gains (or even decrease) in performance just due to the aforementioned hidden and/or cross-object phenomena. We also present an application-transparent implementation of the evolutionary algorithm within the ROme OpTimistic Simulator (ROOT-Sim), namely an open source, general purpose simulation environment designed according to the optimistic synchronization paradigm

    Multiple-line inference of selection on quantitative traits

    Full text link
    Trait differences between species may be attributable to natural selection. However, quantifying the strength of evidence for selection acting on a particular trait is a difficult task. Here we develop a population-genetic test for selection acting on a quantitative trait which is based on multiple-line crosses. We show that using multiple lines increases both the power and the scope of selection inference. First, a test based on three or more lines detects selection with strongly increased statistical significance, and we show explicitly how the sensitivity of the test depends on the number of lines. Second, a multiple-line test allows to distinguish different lineage-specific selection scenarios. Our analytical results are complemented by extensive numerical simulations. We then apply the multiple-line test to QTL data on floral character traits in plant species of the Mimulus genus and on photoperiodic traits in different maize strains, where we find a signatures of lineage-specific selection not seen in a two-line test.Comment: 21 pages, 11 figures; to appear in Genetic
    • …
    corecore