60,437 research outputs found

    Classification methods for noise transients in advanced gravitational-wave detectors

    Get PDF
    Noise of non-astrophysical origin will contaminate science data taken by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) and Advanced Virgo gravitational-wave detectors. Prompt characterization of instrumental and environmental noise transients will be critical for improving the sensitivity of the advanced detectors in the upcoming science runs. During the science runs of the initial gravitational-wave detectors, noise transients were manually classified by visually examining the time-frequency scan of each event. Here, we present three new algorithms designed for the automatic classification of noise transients in advanced detectors. Two of these algorithms are based on Principal Component Analysis. They are Principal Component Analysis for Transients (PCAT), and an adaptation of LALInference Burst (LIB). The third algorithm is a combination of an event generator called Wavelet Detection Filter (WDF) and machine learning techniques for classification. We test these algorithms on simulated data sets, and we show their ability to automatically classify transients by frequency, SNR and waveform morphology

    Methods for detection and characterization of signals in noisy data with the Hilbert-Huang Transform

    Full text link
    The Hilbert-Huang Transform is a novel, adaptive approach to time series analysis that does not make assumptions about the data form. Its adaptive, local character allows the decomposition of non-stationary signals with hightime-frequency resolution but also renders it susceptible to degradation from noise. We show that complementing the HHT with techniques such as zero-phase filtering, kernel density estimation and Fourier analysis allows it to be used effectively to detect and characterize signals with low signal to noise ratio.Comment: submitted to PRD, 10 pages, 9 figures in colo

    Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake

    Full text link
    The variation of fractal dimension and entropy during a damage evolution process, especially approaching critical failure, has been recently investigated. A sudden drop of fractal dimension has been proposed as a quantitative indicator of damage localization or a likely precursor of an impending catastrophic failure. In this contribution, electromagnetic emissions recorded prior to significant earthquake are analysed to investigate whether they also present such sudden fractal dimension and entropy drops as the main catastrophic event is approaching. The pre-earthquake electromagnetic time series analysis results reveal a good agreement to the theoretically expected ones indicating that the critical fracture is approaching

    Audio-visual foreground extraction for event characterization

    Get PDF
    This paper presents a new method able to integrate audio and visual information for scene analysis in a typical surveillance scenario, using only one camera and one monaural microphone. Visual information is analyzed by a standard visual background/foreground (BG/FG) modelling module, enhanced with a novelty detection stage, and coupled with an audio BG/FG modelling scheme. The audiovisual association is performed on-line, by exploiting the concept of synchrony. Experimental tests carrying out classification and clustering of events show all the potentialities of the proposed approach, also in comparison with the results obtained by using the single modalities

    Stacking Gravitational Wave Signals from Soft Gamma Repeater Bursts

    Full text link
    Soft gamma repeaters (SGRs) have unique properties that make them intriguing targets for gravitational wave (GW) searches. They are nearby, their burst emission mechanism may involve neutron star crust fractures and excitation of quasi-normal modes, and they burst repeatedly and sometimes spectacularly. A recent LIGO search for transient GW from these sources placed upper limits on a set of almost 200 individual SGR bursts. These limits were within the theoretically predicted range of some models. We present a new search strategy which builds upon the method used there by "stacking" potential GW signals from multiple SGR bursts. We assume that variation in the time difference between burst electromagnetic emission and burst GW emission is small relative to the GW signal duration, and we time-align GW excess power time-frequency tilings containing individual burst triggers to their corresponding electromagnetic emissions. Using Monte Carlo simulations, we confirm that gains in GW energy sensitivity of N^{1/2} are possible, where N is the number of stacked SGR bursts. Estimated sensitivities for a mock search for gravitational waves from the 2006 March 29 storm from SGR 1900+14 are also presented, for two GW emission models, "fluence-weighted" and "flat" (unweighted).Comment: 17 pages, 16 figures, submitted to PR

    The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab

    Get PDF
    The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and antineutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related technical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.Comment: 43 pages, 27 figures, 5 tables - update referenc
    corecore