268 research outputs found

    Evaluation of Decentralized Event-Triggered Control Strategies for Cyber-Physical Systems

    No full text
    Energy constraint long-range wireless sensor/ actuator based solutions are theoretically the perfect choice to support the next generation of city-scale cyber-physical systems. Traditional systems adopt periodic control which increases network congestion and actuations while burdens the energy consumption. Recent control theory studies overcome these problems by introducing aperiodic strategies, such as event trigger control. In spite of the potential savings, these strategies assume actuator continuous listening while ignoring the sensing energy costs. In this paper, we fill this gap, by enabling sensing and actuator listening duty-cycling and proposing two innovative MAC protocols for three decentralized event trigger contro l approaches. A laboratory experimental testbed, which emulates a smart water network, was modelled and extended to evaluate the impact of system parameters and the performance of each approach. Experimental results reveal the predominance of the decentralized event-triggered control against the classic periodic control either in terms of communication or actuation by promising significant system lifetime extension

    Modelling of an axial flow compact separator using neural network

    Get PDF
    A novel design axial flow cyclonic separator called I-SEP was tested with an extensive set of experiments using air-water two phase flow mixture at atmospheric pressure. These experiments provided valuable data on the separation efficiency and pressure drop under different inlet conditions. The performance parameters i.e. Gas Carry Under (GCU) and Liquid Carry Over (LCO) were found to be non-linearly related to the inlet operating conditions. However it was found that resistance on the tangential outlet of the I-SEP affects the GCU and that manipulating the pressure difference between the two outlets and the inlet of the I-SEP through manual control valves, the GCU could be controlled. The separator was also extensively tested and compared with a gravity separator, when they were placed at the exit of a riser, in severe slugging condition frequently encountered in the production pipe work from some oil fields. The tests revealed that the I-SEP has better tendency to suppress severe slugging as compared to the gravity separator. A framework for neural network based on multiple types of input was also developed to model the separation performance of the I-SEP. Mutual Information (one of the key elements of the information theory) was applied to select the appropriate candidate input variables to the neural network framework. This framework was then used to develop a neural network model based on dimensionless input parameters such as pressure coefficient. This neural network model produced satisfactory prediction on unseen experimental data. The inverse function of a trained neural network was combined with a PID controller in a closed loop to control the GCU and LCO at a given set point by predicting the manipulating variable i.e. pressure at the I-SEP outlets. This control scheme was simulated using the test data. Such controller could be used to assist the operator in maintaining and controlling the GCU or LCO at the I-SEP outlets.The work performed during this study also includes the development of a data repository system to store and query the experimental result. An internet based framework is also developed that allows remote access of the experimental data using internet or wireless mobile devices

    Study on Ground Engineering and Management of Carbonate Oil Field A under Rolling Development Mode

    Get PDF
    Carbonate rock has the characteristics of complicated accumulation rules, large-scale development, high yield but unstable production. Therefore, the management and control of surface engineering projects of carbonate rock oil and gas reservoirs faces huge difficulties and challenges. The construction of surface engineering should conform to the principle of integrated underground and ground construction and adapt to the oilfield development model. This paper takes the newly added area A of the carbonated oil field as an example to study the ground engineering under the rolling development mode and aims to provide the constructive ideas for the surface engineering under rolling development mode. The overall regional process design adheres to the design concept of "environmental protection, efficiency, and innovation", strictly follows the design specifications, and combines reservoir engineering and oil production engineering programs, oil and gas physical properties and chemical composition, product programs, ground natural conditions, etc. According to the technical and economic analysis and comparison of area A, this paper has worked out a suitable surface engineering construction, pipeline network layout and oil and gas gathering and transportation plan for area A. Some auxiliary management recommendations are also proposed in this paper, like sand prevention management and HSE management for carbonate reservoirs

    A Cyber-Physical Systems Approach to Water Distribution System Monitoring

    Get PDF
    Water Distribution Systems (WDS) are critical infrastructures of national importance that supply water of desired quality and quantity to consumers. They are prone to damages and attacks such as leaks, breaks, and chemical contamination. Monitoring of WDS for prompt response to such events is of paramount importance. WDS monitoring has been typically performed using static sensors that are strategically placed. These solutions are costly and imprecise. Recently mobile sensors for WDS monitoring has attracted research interest to overcome the shortcomings of static sensors. However, most existing solutions are unrealistic, or disrupt the normal functioning of a WDS. They are also designed to be deployed on-demand, i.e., when the utility manager receives complaints or suspects the presence of a threat. We propose to solve the problem of WDS monitoring through a Cyber-Physical system (CPS) approach. We envision a Cyber-Physical Water Distribution System (CPWDS) with mobile sensors that are deployed in the CPWDS and move with the flow of water in pipes; mobile sensors communicate with static beacons placed outside the pipes and report sensed data; the flows in the pipes are controlled to ensure that the sensors continuously cover the main pipes of the WDS. We propose algorithms to efficiently monitor the WDS with limited number of devices, protocols to efficiently communicate among the devices, and mechanisms to control the flows in the WDS such that consumer demands are met while sensors continuously move around. We evaluate our algorithms, protocols, and design of communication, computation and control components of the CPWDS through a simulator developed specifically to model the movement of sensors through the pipes of the WDS. Our simulations indicate that investing on improving the sensing range of mobile sensors reduces the cost of monitoring significantly. Additionally, the placement of beacons, and the communication range impact the accuracy of localization and estimation of sensor locations. Our flow control system is observed to converge and improve the coverage over time

    Using Digital Hydraulics in Secondary Control of Motor Drive

    Get PDF
    Due to the increased focus on pollution and global warming, there is a demand for energy efficient systems. This also applies to the offshore oil and gas industry. Normally used hydraulic systems tend to suffer from low energy efficiency, especially when operating with part loads. In the last decades, a new pump and motor technology has experienced increased interest due to the potential of high energy efficiency in a wide range of operation conditions. This new technology is called digital displacement machine technology. Nowadays, there is a desire from the offshore oil and gas industry to use this digital displacement machine technology to design highly efficient hydraulic winch drive systems. The main objectives of the work presented in this thesis are to design a controller for a digital displacement winch drive system and evaluate its control performance. The design of a controller is one part of the work needed to realizing a winch drive system with digital displacement machines. A winch with a lifting capacity of 20000 kg and a drum capacity of 3600 m of wire rope is used as a case study. Digital displacement machines have strict requirements for the on/off valves used to control each cylinder chamber. It is important to activate the valves at optimal times to ensure operation with high energy efficiency and low pressure and flow peaks. Only a small mistiming of the valves will affect the performance of the digital displacement machine significantly. One of the first contributions presented in this thesis is a method for defining how early or late the valves can be timed without reducing the energy efficiency significantly. The control of digital displacement machines is complicated and non-conventional. Each cylinder can be controlled individually and multiple displacement strategies can be used to achieve the same displacement. Each displacement strategy has its dynamic response characteristics and energy efficiency characteristics. The dynamic response characteristics of the drive system are highly relevant when designing control systems. Therefore, in addition to the conventional classical controller, also a suitable displacement strategy must be designed. Designing controllers for digital displacement machines are therefore more complex than designing controllers for conventional hydraulic machines. One of the main focuses of this project has been to analyze the transient and steady state response characteristics of different displacement strategies. In all, three displacement strategies are examined: full stroke displacement strategy, partial stroke displacement strategy and sequential partial stroke displacement strategy. Also, during this work, a new version of the partial stroke displacement strategy has been developed and included in the dynamic response analysis. The dynamic response analysis is a simulation study, where the simulation model is experimentally validated. The experimental work is conducted on a prototype of a single cylinder digital displacement machine. The prototype consists of a five cylinder radial piston motor where one cylinder is modified to operate with the digital displacement technology. The rest of the cylinders are not changed and not used. In addition to validating the simulation model, the prototype is used to test all of the analyzed displacement strategies in low speed operation. The results from the dynamic response analysis are used to select the displacement strategy that is most suited for use in a winch drive system. Then, controllers for the digital displacement winch drive system are developed. The main focus in the control design phase is not to design a new type of controller but to examine already developed controllers and fit them to a winch system driven by digital displacement machines. In the end, the simulation results of the designed controllers are shown and the results are discussed. The simulation results show that digital displacement machines can be used in winch drive systems and achieve both high motion control performance and wire tension control performance.publishedVersio

    Energy Efficiency

    Get PDF
    This book is one of the most comprehensive and up-to-date books written on Energy Efficiency. The readers will learn about different technologies for energy efficiency policies and programs to reduce the amount of energy. The book provides some studies and specific sets of policies and programs that are implemented in order to maximize the potential for energy efficiency improvement. It contains unique insights from scientists with academic and industrial expertise in the field of energy efficiency collected in this multi-disciplinary forum

    STS-58 Space Shuttle Mission Report

    Get PDF
    The STS-58 Space Shuttle Program Mission Report provides a summary of the payload activities as well as the orbiter, external tank (ET), solid rocket booster (SRB) and redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) subsystems performance during the fifty-eighth mission of the space shuttle program and fifteenth flight of the orbiter vehicle Columbia (OV-102). In addition to the orbiter, the flight vehicle consisted of an ET (ET-57); three SSME's, which were designated as serial numbers 2024, 2109, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-061. The lightweight RSRM's that were installed in each SRB were designated as 360L034A for the left SRB and 360W034B for the right SRB

    ENERCON Station Vacuum Pump Replacement

    Get PDF
    This details the progress of the ENERCON pump replacement project as completed by the Kennesaw State University interdisciplinary senior design group. This project is a two-semester capstone effort for the engineering program at Southern Polytechnic School of Engineering, overseen by Dr. McFall during Fall 2020 and Dr. Khalid during Spring 2021 semesters. The 2020-2021 KSU Interdisciplinary Senior Design team was tasked with completing an Engineering Change Package (ECP) for existing vacuum pumps at ENERCON Station. The mechanical, electrical, and civil students worked together, performing evaluations on existing plant systems to ensure the plant could support the new vacuum pumps. By tying into the plants existing Plant Service Water (PSW) System and electrical grid, and by reusing existing pipe supports as well as designing new ones, it has been determined that the existing ENERCON Station Systems will support the new Nash Liquid Ring Vacuum Seal Pumps and their supporting equipment. All evaluations have been submitted to ENERCON along with all necessary plant documents that have been revised to show the new equipment

    COMPARATIVE ANALYSIS OF EFFICIENCY AND OPERATING CHARACTERISTICS OF AUTOMOTIVE POWERTRAIN ARCHITECTURES THROUGH CHASSIS DYNAMOMETER TESTING

    Get PDF
    The thesis COMPARATIVE ANALYSIS OF EFFICIENCY AND OPERATING CHARACTERISTICS OF AUTOMOTIVE POWERTRAIN ARCHITECTURES THROUGH CHASSIS DYNAMOMETER TESTING was completed through a collaborative partnership between Michigan Technological University and Argonne National Laboratory under a contractual agreement titled Advanced Vehicle Characterization at Argonne National Laboratory . The goal of this project was to investigate, understand and document the performance and operational strategy of several modern passenger vehicles of various architectures. The vehicles were chosen to represent several popular engine and transmission architectures and were instrumented to allow for data collection to facilitate comparative analysis. In order to ensure repeatability and reliability during testing, each vehicle was tested over a series of identical drive cycles in a controlled environment utilizing a vehicle chassis dynamometer. Where possible, instrumentation was preserved between vehicles to ensure robust data collection. The efficiency and fuel economy performance of the vehicles was studied. In addition, the powertrain utilization strategies, significant energy loss sources, tailpipe emissions, combustion characteristics, and cold start behavior were also explored in detail. It was concluded that each vehicle realizes different strengths and suffers from different limitations in the course of their attempts to maximize efficiency and fuel economy. In addition, it was observed that each vehicle regardless of architecture exhibits significant energy losses and difficulties in cold start operation that can be further improved with advancing technology. It is clear that advanced engine technologies and driveline technologies are complimentary aspects of vehicle design that must be utilized together for best efficiency improvements. Finally, it was concluded that advanced technology vehicles do not come without associated cost; the complexity of the powertrains and lifecycle costs must be considered to understand the full impact of advanced vehicle technology
    • …
    corecore