1,412 research outputs found

    A Deterministic Theory for Exact Non-Convex Phase Retrieval

    Full text link
    In this paper, we analyze the non-convex framework of Wirtinger Flow (WF) for phase retrieval and identify a novel sufficient condition for universal exact recovery through the lens of low rank matrix recovery theory. Via a perspective in the lifted domain, we show that the convergence of the WF iterates to a true solution is attained geometrically under a single condition on the lifted forward model. As a result, a deterministic relationship between the accuracy of spectral initialization and the validity of {the regularity condition} is derived. In particular, we determine that a certain concentration property on the spectral matrix must hold uniformly with a sufficiently tight constant. This culminates into a sufficient condition that is equivalent to a restricted isometry-type property over rank-1, positive semi-definite matrices, and amounts to a less stringent requirement on the lifted forward model than those of prominent low-rank-matrix-recovery methods in the literature. We characterize the performance limits of our framework in terms of the tightness of the concentration property via novel bounds on the convergence rate and on the signal-to-noise ratio such that the theoretical guarantees are valid using the spectral initialization at the proper sample complexity.Comment: In Revision for IEEE Transactions on Signal Processin

    Collaborative Spectrum Sensing from Sparse Observations in Cognitive Radio Networks

    Full text link
    Spectrum sensing, which aims at detecting spectrum holes, is the precondition for the implementation of cognitive radio (CR). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage. Due to hardware limitations, each cognitive radio node can only sense a relatively narrow band of radio spectrum. Consequently, the available channel sensing information is far from being sufficient for precisely recognizing the wide range of unoccupied channels. Aiming at breaking this bottleneck, we propose to apply matrix completion and joint sparsity recovery to reduce sensing and transmitting requirements and improve sensing results. Specifically, equipped with a frequency selective filter, each cognitive radio node senses linear combinations of multiple channel information and reports them to the fusion center, where occupied channels are then decoded from the reports by using novel matrix completion and joint sparsity recovery algorithms. As a result, the number of reports sent from the CRs to the fusion center is significantly reduced. We propose two decoding approaches, one based on matrix completion and the other based on joint sparsity recovery, both of which allow exact recovery from incomplete reports. The numerical results validate the effectiveness and robustness of our approaches. In particular, in small-scale networks, the matrix completion approach achieves exact channel detection with a number of samples no more than 50% of the number of channels in the network, while joint sparsity recovery achieves similar performance in large-scale networks.Comment: 12 pages, 11 figure

    Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion

    Full text link
    A spectrally sparse signal of order rr is a mixture of rr damped or undamped complex sinusoids. This paper investigates the problem of reconstructing spectrally sparse signals from a random subset of nn regular time domain samples, which can be reformulated as a low rank Hankel matrix completion problem. We introduce an iterative hard thresholding (IHT) algorithm and a fast iterative hard thresholding (FIHT) algorithm for efficient reconstruction of spectrally sparse signals via low rank Hankel matrix completion. Theoretical recovery guarantees have been established for FIHT, showing that O(r2log2(n))O(r^2\log^2(n)) number of samples are sufficient for exact recovery with high probability. Empirical performance comparisons establish significant computational advantages for IHT and FIHT. In particular, numerical simulations on 33D arrays demonstrate the capability of FIHT on handling large and high-dimensional real data

    Optimal selection of reduced rank estimators of high-dimensional matrices

    Full text link
    We introduce a new criterion, the Rank Selection Criterion (RSC), for selecting the optimal reduced rank estimator of the coefficient matrix in multivariate response regression models. The corresponding RSC estimator minimizes the Frobenius norm of the fit plus a regularization term proportional to the number of parameters in the reduced rank model. The rank of the RSC estimator provides a consistent estimator of the rank of the coefficient matrix; in general, the rank of our estimator is a consistent estimate of the effective rank, which we define to be the number of singular values of the target matrix that are appropriately large. The consistency results are valid not only in the classic asymptotic regime, when nn, the number of responses, and pp, the number of predictors, stay bounded, and mm, the number of observations, grows, but also when either, or both, nn and pp grow, possibly much faster than mm. We establish minimax optimal bounds on the mean squared errors of our estimators. Our finite sample performance bounds for the RSC estimator show that it achieves the optimal balance between the approximation error and the penalty term. Furthermore, our procedure has very low computational complexity, linear in the number of candidate models, making it particularly appealing for large scale problems. We contrast our estimator with the nuclear norm penalized least squares (NNP) estimator, which has an inherently higher computational complexity than RSC, for multivariate regression models. We show that NNP has estimation properties similar to those of RSC, albeit under stronger conditions. However, it is not as parsimonious as RSC. We offer a simple correction of the NNP estimator which leads to consistent rank estimation.Comment: Published in at http://dx.doi.org/10.1214/11-AOS876 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org) (some typos corrected

    Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence

    Full text link
    In this paper, we propose a new {\it \underline{R}ecursive} {\it \underline{I}mportance} {\it \underline{S}ketching} algorithm for {\it \underline{R}ank} constrained least squares {\it \underline{O}ptimization} (RISRO). As its name suggests, the algorithm is based on a new sketching framework, recursive importance sketching. Several existing algorithms in the literature can be reinterpreted under the new sketching framework and RISRO offers clear advantages over them. RISRO is easy to implement and computationally efficient, where the core procedure in each iteration is only solving a dimension reduced least squares problem. Different from numerous existing algorithms with locally geometric convergence rate, we establish the local quadratic-linear and quadratic rate of convergence for RISRO under some mild conditions. In addition, we discover a deep connection of RISRO to Riemannian manifold optimization on fixed rank matrices. The effectiveness of RISRO is demonstrated in two applications in machine learning and statistics: low-rank matrix trace regression and phase retrieval. Simulation studies demonstrate the superior numerical performance of RISRO

    High Dimensional Statistical Estimation under Uniformly Dithered One-bit Quantization

    Full text link
    In this paper, we propose a uniformly dithered 1-bit quantization scheme for high-dimensional statistical estimation. The scheme contains truncation, dithering, and quantization as typical steps. As canonical examples, the quantization scheme is applied to the estimation problems of sparse covariance matrix estimation, sparse linear regression (i.e., compressed sensing), and matrix completion. We study both sub-Gaussian and heavy-tailed regimes, where the underlying distribution of heavy-tailed data is assumed to have bounded moments of some order. We propose new estimators based on 1-bit quantized data. In sub-Gaussian regime, our estimators achieve near minimax rates, indicating that our quantization scheme costs very little. In heavy-tailed regime, while the rates of our estimators become essentially slower, these results are either the first ones in an 1-bit quantized and heavy-tailed setting, or already improve on existing comparable results from some respect. Under the observations in our setting, the rates are almost tight in compressed sensing and matrix completion. Our 1-bit compressed sensing results feature general sensing vector that is sub-Gaussian or even heavy-tailed. We also first investigate a novel setting where both the covariate and response are quantized. In addition, our approach to 1-bit matrix completion does not rely on likelihood and represent the first method robust to pre-quantization noise with unknown distribution. Experimental results on synthetic data are presented to support our theoretical analysis.Comment: We add lower bounds for 1-bit quantization of heavy-tailed data (Theorems 11, 14
    corecore