78,475 research outputs found

    Hybrid Modeling for Scenario-Based Evaluation of Failure Effects in Advanced Hardware-Software Designs

    Get PDF
    This paper describes an incremental scenario-based simulation approach to evaluation of intelligent software for control and management of hardware systems. A hybrid continuous/discrete event simulation of the hardware dynamically interacts with the intelligent software in operations scenarios. Embedded anomalous conditions and failures in simulated hardware can lead to emergent software behavior and identification of missing or faulty software or hardware requirements. An approach is described for extending simulation-based automated incremental failure modes and effects analysis, to support concurrent evaluation of intelligent software and the hardware controlled by the softwar

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK

    Automated post-fault diagnosis of power system disturbances

    Get PDF
    In order to automate the analysis of SCADA and digital fault recorder (DFR) data for a transmission network operator in the UK, the authors have developed an industrial strength multi-agent system entitled protection engineering diagnostic agents (PEDA). The PEDA system integrates a number of legacy intelligent systems for analyzing power system data as autonomous intelligent agents. The integration achieved through multi-agent systems technology enhances the diagnostic support offered to engineers by focusing the analysis on the most pertinent DFR data based on the results of the analysis of SCADA. Since November 2004 the PEDA system has been operating online at a UK utility. In this paper the authors focus on the underlying intelligent system techniques, i.e. rule-based expert systems, model-based reasoning and state-of-the-art multi-agent system technology, that PEDA employs and the lessons learnt through its deployment and online use

    A Framework for Coordinated Control of Multi-Agent Systems

    Get PDF
    Multi-agent systems represent a group of agents that cooperate to solve common tasks in a dynamic environment. Multi-agent control systems have been widely studied in the past few years. The control of multi-agent systems relates to synthesizing control schemes for systems which are inherently distributed and composed of multiple interacting entities. Because of the wide applications of multi-agent theories in large and complex control systems, it is necessary to develop a framework to simplify the process of developing control schemes for multi-agent systems. In this study, a framework is proposed for the distributed control and coordination of multi-agent systems. In the proposed framework, the control of multi-agent systems is regarded as achieving decentralized control and coordination of agents. Each agent is modeled as a Coordinated Hybrid Agent (CHA) which is composed of an intelligent coordination layer and a hybrid control layer. The intelligent coordination layer takes the coordination input, plant input and workspace input. After processing the coordination primitives, the intelligent coordination layer outputs the desired action to the hybrid layer. In the proposed framework, we describe the coordination mechanism in a domain-independent way, as simple abstract primitives in a coordination rule base for certain dependency relationships between the activities of different agents. The intelligent coordination layer deals with the planning, coordination, decision-making and computation of the agent. The hybrid control layer of the proposed framework takes the output of the intelligent coordination layer and generates discrete and continuous control signals to control the overall process. In order to verify the feasibility of the proposed framework, experiments for both heterogeneous and homogeneous Multi-Agent Systems (MASs) are implemented. In addition, the stability of systems modeled using the proposed framework is also analyzed. The conditions for asymptotic stability and exponential stability of a CHA system are given. In order to optimize a Multi-Agent System (MAS), a hybrid approach is proposed to address the optimization problem for a MAS modeled using the CHA framework. Both the event-driven dynamics and time-driven dynamics are included for the formulation of the optimization problem. A generic formula is given for the optimization of the framework. A direct identification algorithm is also discussed to solve the optimization problem

    Alternative sweetener from curculigo fruits

    Get PDF
    This study gives an overview on the advantages of Curculigo Latifolia as an alternative sweetener and a health product. The purpose of this research is to provide another option to the people who suffer from diabetes. In this research, Curculigo Latifolia was chosen, due to its unique properties and widely known species in Malaysia. In order to obtain the sweet protein from the fruit, it must go through a couple of procedures. First we harvested the fruits from the Curculigo trees that grow wildly in the garden. Next, the Curculigo fruits were dried in the oven at 50 0C for 3 days. Finally, the dried fruits were blended in order to get a fine powder. Curculin is a sweet protein with a taste-modifying activity of converting sourness to sweetness. The curculin content from the sample shown are directly proportional to the mass of the Curculigo fine powder. While the FTIR result shows that the sample spectrum at peak 1634 cmā€“1 contains secondary amines. At peak 3307 cmā€“1 contains alkynes

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Development of a Multi-agent Collision Resolution System at the Supply of Spare Parts and Components to the Production Equipment of Industrial Enterprises

    Get PDF
    The approach to the creation of computer facilities for the automation of the technical maintenance of production equipment (TMPE) at industrial enterprises (IE) is outlined. Meaningful and formal statement of the problem of forming solutions for identifying and eliminating collisions that arise when delivering spare parts and components for TMPE are presented. The method of formation of coordinating decisions on maintenance with spare parts and accessories for carrying out TMPE at IE is described. The organization of intellectual support of formation of coordinating decisions by recognition of potential collision in the TMPE process is offered. This procedure involves checking the real existence of the collision and issuing a coordinating decision. In this case, the decision is formed in the event of a disagreement between the need for spare parts and components for the TMPE maintenance, with their availability in the PP warehouse. The ways of software implementation of this method in the environment of multi-agent system are considered. In particular, the description of the multi-agent system developed during the prototype research is given. The prototype is implemented using CORBA technology, in accordance with DSTU ISO/ EC 2382-15:2005. The calculation of the efficiency of the application of the developed computer tools in production is shown. To assess the quality of the system, a sliding control method based on leave-on-out cross-validation (LOOCV) is applied
    • ā€¦
    corecore