1,103 research outputs found

    Analysis of Low Energy Adaptive Clustering Hierarchy (LEACH) protocol

    Get PDF
    Sensor network consists of tiny sensors and actuators with general purpose computing elements to cooperatively monitor physical or environmental conditions, such as temperature, pressure, etc. Wireless Sensor Networks are uniquely characterized by properties like limited power they can harvest or store, dynamic network topology, large scale of deployment. Sensor networks have a huge application in fields which includes habitat monitoring, object tracking, fire detection, land slide detection and traffic monitoring. Based on the network topology, routing protocols in sensor networks can be classified as flat-based routing, hierarchical-based routing and location-based routing. These protocols are quite simple and hence are very susceptible to attacks like Sinkhole attack, Selective forwarding, Sybil attack, Wormholes, HELLO flood attack, Acknowledgement spoofing or altering, replaying routing information. Low Energy Adaptive Clustering Hierarchy (LEACH) is an energy-efficient hierarchical-based routing protocol. Our prime focus was on the analysis of LEACH based upon certain parameters like network lifetime, stability period, etc. and also the effect of selective forwarding attack and degree of heterogeneity on LEACH protocol. After a number of simulations, it was found that the stability region’s length is considerably increased by choosing an optimal value of heterogeneity; energy is not properly utilized and throughput is decreased in networks compromised by selective forwarding attack but the number of cluster-heads per round remains unaffected in such networks

    An event-aware cluster-head rotation algorithm for extending lifetime of wireless sensor Network with smart nodes

    Get PDF
    Smart sensor nodes can process data collected from sensors, make decisions, and recognize relevant events based on the sensed information before sharing it with other nodes. In wireless sensor networks, the smart sensor nodes are usually grouped in clusters for effective cooperation. One sensor node in each cluster must act as a cluster head. The cluster head depletes its energy resources faster than the other nodes. Thus, the cluster-head role must be periodically reassigned (rotated) to different sensor nodes to achieve a long lifetime of wireless sensor network. This paper introduces a method for extending the lifetime of the wireless sensor networks with smart nodes. The proposed method combines a new algorithm for rotating the cluster-head role among sensor nodes with suppression of unnecessary data transmissions. It enables effective control of the cluster-head rotation based on expected energy consumption of sensor nodes. The energy consumption is estimated using a lightweight model, which takes into account transmission probabilities. This method was implemented in a prototype of wireless sensor network. During experimental evaluation of the new method, detailed measurements of lifetime and energy consumption were conducted for a real wireless sensor network. Results of these realistic experiments have revealed that the lifetime of the sensor network is extended when using the proposed method in comparison with state-of-the-art cluster-head rotation algorithms

    INTELLIGENT WIRELESS SENSOR BASED BOMB DETECTION: AN INTEGRATION QUALITY OF SERVICE MODEL FOR INTERNET OF THINGS PLATFORM

    Get PDF
    Owing to the global security concerns, intelligent Wireless Sensor Networks (iWSN) have been a major outcome of technological breakthrough. It thus becomes a practical platform where the information about the real world could be obtained via data fusion and computational embedded hardware systems. This paper presents a new perspective to Bomb Detection Technology (BDT) using an integration model that is based on the Internet of Things (IoT)ideology. QoS performance evaluation of selected algorithms, that is, the LEACH, Direct, as well as, a proposed cluster head (CH) algorithm for event based sensing and communication within an IoT deployment context was undertaken. Detection of suicide bombers and their related security frontiers is addressed in the IoT integration processed at the network level. The obtained results validate the need to integrate WSN devices into the IoT stack. In this regard, the IoT based CH algorithm is proposed for efficient communication system and energy utilization in bomb detonation hardware designs

    Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks

    Get PDF
    Collaborative signal and information processing (CSIP) plays an important role in the deployment of wireless sensor networks. Since each sensor has limited computing capability, constrained power usage, and limited sensing range, collaboration among sensor nodes is important in order to compensate for each other’s limitation as well as to improve the degree of fault tolerance. In order to support the execution of CSIP algorithms, distributed computing paradigm and clustering protocols, are needed, which are the major concentrations of this dissertation. In order to facilitate collaboration among sensor nodes, we present a mobile-agent computing paradigm, where instead of each sensor node sending local information to a processing center, as is typical in the client/server-based computing, the processing code is moved to the sensor nodes through mobile agents. We further conduct extensive performance evaluation versus the traditional client/server-based computing. Experimental results show that the mobile agent paradigm performs much better when the number of nodes is large while the client/server paradigm is advantageous when the number of nodes is small. Based on this result, we propose a hybrid computing paradigm that adopts different computing models within different clusters of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within clusters or between clusters according to the different cluster configurations. This new computing paradigm can take full advantages of both client/server and mobile agent computing paradigms. Simulations show that the hybrid computing paradigm performs better than either the client/server or the mobile agent computing. The mobile agent itinerary has a significant impact on the overall performance of the sensor network. We thus formulate both the static mobile agent planning and the dynamic mobile agent planning as optimization problems. Based on the models, we present three itinerary planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary performs the best under a wide range of conditions, thus making it particularly suitable for CSIP in wireless sensor networks. In order to facilitate the deployment of hybrid computing paradigm, we proposed a decentralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient way. The clustering process is only invoked by events occur in the sensor network. Nodes that do not detect the events are put into the sleep state to save energy. In addition, power control technique is used to minimize the transmission power needed. The advantages of DRC protocol are demonstrated through simulations

    QoS BASED ENERGY EFFICIENT ROUTING IN WIRELESS SENSOR NETWORK

    Get PDF
    A Wireless Sensor Networks (WSN) is composed of a large number of low-powered sensor nodes that are randomly deployed to collect environmental data. In a WSN, because of energy scarceness, energy efficient gathering of sensed information is one of the most critical issues. Thus, most of the WSN routing protocols found in the literature have considered energy awareness as a key design issue. Factors like throughput, latency and delay are not considered as critical issues in these protocols. However, emerging WSN applications that involve multimedia and imagining sensors require end-to-end delay within acceptable limits. Hence, in addition to energy efficiency, the parameters (delay, packet loss ratio, throughput and coverage) have now become issues of primary concern. Such performance metrics are usually referred to as the Quality of Service (QoS) in communication systems. Therefore, to have efficient use of a sensor node’s energy, and the ability to transmit the imaging and multimedia data in a timely manner, requires both a QoS based and energy efficient routing protocol. In this research work, a QoS based energy efficient routing protocol for WSN is proposed. To achieve QoS based energy efficient routing, three protocols are proposed, namely the QoS based Energy Efficient Clustering (QoSEC) for a WSN, the QoS based Energy Efficient Sleep/Wake Scheduling (QoSES) for a WSN, and the QoS based Energy Efficient Mobile Sink (QoSEM) based Routing for a Clustered WSN. Firstly, in the QoSEC, to achieve energy efficiency and to prolong network/coverage lifetime, some nodes with additional energy resources, termed as super-nodes, in addition to normal capability nodes, are deployed. Multi-hierarchy clustering is done by having super-nodes (acting as a local sink) at the top tier, cluster head (normal node) at the middle tier, and cluster member (normal node) at the lowest tier in the hierarchy. Clustering within normal sensor nodes is done by optimizing the network/coverage lifetime through a cluster-head-selection algorithm and a sleep/wake scheduling algorithm. QoSEC resolves the hot spot problem and prolongs network/coverage lifetime. Secondly, the QoSES addressed the delay-minimization problem in sleep/wake scheduling for event-driven sensor networks for delay-sensitive applications. For this purpose, QoSES assigns different sleep/wake intervals (longer wake interval) to potential overloaded nodes, according to their varied traffic load requirement defined a) by node position in the network, b) by node topological importance, and c) by handling burst traffic in the proximity of the event occurrence node. Using these heuristics, QoSES minimizes the congestion at nodes having heavy traffic loads and ultimately reduces end-to-end delay while maximizing the throughput. Lastly, the QoSEM addresses hot spot problem, delay minimization, and QoS assurance. To address hot-spot problem, mobile sink is used, that move in the network to gather data by virtue of which nodes near to the mobile sink changes with each movement, consequently hot spot problem is minimized. To achieve delay minimization, static sink is used in addition to the mobile sink. Delay sensitive data is forwarded to the static sink, while the delay tolerant data is sent through the mobile sink. For QoS assurance, incoming traffic is divided into different traffic classes and each traffic class is assigned different priority based on their QoS requirement (bandwidth, delay) determine by its message type and content. Furthermore, to minimize delay in mobile sink data gathering, the mobile sink is moved throughout the network based on the priority messages at the nodes. Using these heuristics, QoSEM incur less end-to-end delay, is energy efficient, as well as being able to ensure QoS. Simulations are carried out to evaluate the performance of the proposed protocols of QoSEC, QoSES and QoSEM, by comparing their performance with the established contemporary protocols. Simulation results have demonstrated that when compared with contemporary protocols, each of the proposed protocol significantly prolong the network and coverage lifetime, as well as improve the other QoS routing parameters, such as delay, packet loss ratio, and throughput

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    CENTRALIZED SECURITY PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSN) is an exciting new technology with applications in military, industry, and healthcare. These applications manage sensitive information in potentially hostile environments. Security is a necessity, but building a WSN protocol is difficult. Nodes are energy and memory constrained devices intended to last months. Attackers are physically able to compromise nodes and attack the network from within. The solution is Centralized Secure Low Energy Adaptive Clustering Hierarchy (CSLEACH). CSLEACH provides security, energy efficiency, and memory efficiency. CSLEACH takes a centralized approach by leveraging the gateways resources to extend the life of a network as well as provide trust management. Using a custom event based simulator, I am able to show CSLEACH\u27s trust protocol is more energy efficient and requires less memory per node than Trust-based LEACH (TLEACH). In terms of security, CSLEACH is able to protect against a wide range of attacks from spoofed messages to compromised node attacks and it provides confidentiality, authentication, integrity and freshness
    corecore