11 research outputs found

    Joint Event Extraction via Structural Semantic Matching

    Full text link
    Event Extraction (EE) is one of the essential tasks in information extraction, which aims to detect event mentions from text and find the corresponding argument roles. The EE task can be abstracted as a process of matching the semantic definitions and argument structures of event types with the target text. This paper encodes the semantic features of event types and makes structural matching with target text. Specifically, Semantic Type Embedding (STE) and Dynamic Structure Encoder (DSE) modules are proposed. Also, the Joint Structural Semantic Matching (JSSM) model is built to jointly perform event detection and argument extraction tasks through a bidirectional attention layer. The experimental results on the ACE2005 dataset indicate that our model achieves a significant performance improvemen

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Segmentation and quantification of spinal cord gray matter–white matter structures in magnetic resonance images

    Get PDF
    This thesis focuses on finding ways to differentiate the gray matter (GM) and white matter (WM) in magnetic resonance (MR) images of the human spinal cord (SC). The aim of this project is to quantify tissue loss in these compartments to study their implications on the progression of multiple sclerosis (MS). To this end, we propose segmentation algorithms that we evaluated on MR images of healthy volunteers. Segmentation of GM and WM in MR images can be done manually by human experts, but manual segmentation is tedious and prone to intra- and inter-rater variability. Therefore, a deterministic automation of this task is necessary. On axial 2D images acquired with a recently proposed MR sequence, called AMIRA, we experiment with various automatic segmentation algorithms. We first use variational model-based segmentation approaches combined with appearance models and later directly apply supervised deep learning to train segmentation networks. Evaluation of the proposed methods shows accurate and precise results, which are on par with manual segmentations. We test the developed deep learning approach on images of conventional MR sequences in the context of a GM segmentation challenge, resulting in superior performance compared to the other competing methods. To further assess the quality of the AMIRA sequence, we apply an already published GM segmentation algorithm to our data, yielding higher accuracy than the same algorithm achieves on images of conventional MR sequences. On a different topic, but related to segmentation, we develop a high-order slice interpolation method to address the large slice distances of images acquired with the AMIRA protocol at different vertebral levels, enabling us to resample our data to intermediate slice positions. From the methodical point of view, this work provides an introduction to computer vision, a mathematically focused perspective on variational segmentation approaches and supervised deep learning, as well as a brief overview of the underlying project's anatomical and medical background

    Measuring Behavior 2018 Conference Proceedings

    Get PDF
    These proceedings contain the papers presented at Measuring Behavior 2018, the 11th International Conference on Methods and Techniques in Behavioral Research. The conference was organised by Manchester Metropolitan University, in collaboration with Noldus Information Technology. The conference was held during June 5th – 8th, 2018 in Manchester, UK. Building on the format that has emerged from previous meetings, we hosted a fascinating program about a wide variety of methodological aspects of the behavioral sciences. We had scientific presentations scheduled into seven general oral sessions and fifteen symposia, which covered a topical spread from rodent to human behavior. We had fourteen demonstrations, in which academics and companies demonstrated their latest prototypes. The scientific program also contained three workshops, one tutorial and a number of scientific discussion sessions. We also had scientific tours of our facilities at Manchester Metropolitan Univeristy, and the nearby British Cycling Velodrome. We hope this proceedings caters for many of your interests and we look forward to seeing and hearing more of your contributions

    Utvrđivanje povezanosti genotipa i fenotipa hipertrofične kardiomiopatije primenom mašinskog učenja

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most prevailing heritable cardiomyopathy. HCM is diagnosed by the existence of left ventricular hypertrophy despite the lack of abnormal loading conditions causing it. HCM is a heterogeneous disease regarding genetic mutations. Clinical manifestations and prognosis vary widely as well. Some patients are completely asymptomatic, in some others, severe heart failure and sudden cardiac death may arise. Definitive genotype-phenotype associations are still unknown. Machine learning (ML) is a subdiscipline of artificial intelligence, wherein computer algorithms are used for learning complex patterns from data. The aim of this research was to decipher genotype-phenotype associations in HCM using ML. The study was multi-centric and retroprospective, and involved 143 adult HCM patients. Medical and family history, anthropometric measurements, genetic testing, blood markers, transthoracic echocardiography with Doppler, cardiopulmonary exercise testing (CPET), ECG and ECG-holter-monitoring data were collected and further analysed. HCM subphenotypes were identified using clustering. Associations of genotype and phenotype were evaluated used Python modules Scikit-learn and SHapley Additive exPlanation (SHAP). Genotype-specific echocardiogram findings were identified using Python deep learning (DL) and computer vision library Fast AI, by generation of DL models for classification of ultrasonic images, and later analysis of the most decisive image regions. Four HCM subtypes were identified based on the overall phenotypic appearance: cluster 0 (“AHOLD”), distinguishable by aortic root diameter (AO) and lactate dehydrogenase (LDH), with values mostly AO > 30 mm, and LDH > 300 U/L; cluster 1 (“RVSP ASCAOVS”), distinguishable by right ventricle systolic pressure (RVSP), diameter of ascending aorta (AscAO), and aortic leaflet separation diameter (AOvs), with the values of RVSP 27 m/s; cluster 2 (“weight”), recognizable by weight, wherein values being mostly > 95 kg; and cluster 3 (“AV LVOT PG”) distinguishable by aortic valve mean pressure gradient (AV meanPG), aortic valve peak pressure gradient (AV maxPG), and left ventricular outflow tract peak gradient (LVOT maxPG) wherein AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, and LVOT maxPG > 15 mmHg. ML algorithms confirmed that the determination of genotype-phenotype associations in HCM is a cumbersome task. Two phenotypic outcomes that can be predicted from mutated genes are the absence or presence of sinus rhythm and the absence or presence of myocardial injury. Models predicting the absence or presence of sinus rhythm had similar performance when they were built using only causative genes and when using all analyzed genes, indicating potential importance of causative genes and irrelevance of non-causative genes for that outcome. On the other hand, models predicting myocardial injury — infarction had better performance when they were built using all analyzed genes (and not just causative ones), indicating a potentially significant role of non-causative genes in that outcome. The ML algorithms were able to predict phenotypic outcomes — fatigue, dyspnea, chest pain, palpitations, syncope, heart murmur, pretibial edema, systolic anterior motion, papillary muscle abnormalities, hypokinesia, atrial fibrillation (AF), first-degree atrioventricular (AV) block, left bundle branch block (LBBB), right bundle branch block (RBBB), left anterior hemiblock, ST segment abnormalities, and negative T wave — using genotypic and phenotypic data. The combination of a mutation in TNNT2 and peak respiratory exchange ratio (RER) contributed the most in predicting fatigue. The combination of a mutation in MYBPC3 and peak VO2 contributed the most in predicting dyspnea. The combination of a mutation in TNNI3 and high-density lipoprotein (HDL) level contributed the most in predicting chest pain. The combination of a mutation in MYH7 and pacemaker/defibrillator implants in family history, as well as the combination of a mutation in TNNT2 and left atrial volume (LAV), contributed the most in predicting heart murmur. Lastly, the combination of a mutation in MYBPC3 and transmitral maximal pressure gradient (MV maxPG) aided the most in predicting negative T wave. Genotype-specific echocardiogram findings were identified: for mutations in the MYH7 gene (vs. mutation not detected), the most discriminative structures are the left ventricular outflow tract, septum, anterior wall, apex, right ventricle, and mitral apparatus; for mutations in the TNNT2 gene (vs. mutation not detected), the most discriminative structures are septum and right ventricle; while for mutations in MYBPC3 gene (vs. mutation not detected) these are septum, left ventricle, and left ventricle chamber. ML has thus been demonstrated to be useful in deciphering genotype-phenotype associations in HCM.Hipertrofična kardiomiopatija (HCM) je najčešća nasledna kardiomiopatija. Dijagnoza HCM se postavlja na osnovu prisustva hipertrofije leve komore, uz isključivanje drugih uzroka hipertrofije. U pogledu genetičkih mutacija, HCM je heterogena bolest. Kliničke manifestacije i prognoza takođe mogu da budu veoma različite. Kod nekih pacijenata HCM je potpuno asimptomatska, dok kod drugih mogu da se razviju teška srčana insuficijencija i iznenadna srčana smrt. Povezanost genotipa i fenotipa HCM još uvek nije u potpunosti utvrđena. Mašinsko učenje je subdisciplina veštačke inteligencije u kojoj se kompjuterski algoritmi koriste za učenje kompleksnih šablona iz podataka. Cilj ovog istraživanja je bilo utvrđivanje povezanosti genotipa i fenotipa HCM primenom mašinskog učenja. Studija je bila multicentrična i retroprospektivna, obuhvatila je 143 odrasla pacijenta sa potvrđenom dijagnozom HCM. Anamnestički podaci, antropometrijska merenja, rezultati genetičkog testiranja, biohemijskih analiza, nalazi transtorakalne ehokardiografije sa doplerom, kardiopulmonalnog testa fizičkim opterećenjem, elektrokardiograma (EKG) i EKG-holter-monitoringa su prikupljeni i korišćeni u daljoj analizi. HCM subfenotipi su identifikovani klasterizacijom. Povezanost genotipa i fenotipa je evaluirana korišćenjem Python modula Scikit-learn i SHapley Additive exPlanation (SHAP). Genotip-specifični nalazi ehokardiograma su identifikovani korišćenjem Python biblioteke za duboko učenje i računarski vid Fast AI, izradom modela za klasifikaciju ehokardiograma i naknadnom analizom regiona koji su najviše doprineli razlikovanju klasa. Četiri podtipa HCM su identifikovana na osnovu svih dostupnih podataka o fenotipu: klaster 0 (“AHOLD”), koji se razlikuje od ostalih na osnovu prečnika korena aorte (AO) i laktat dehidrogenaze (LDH), pri čemu su vrednosti AO > 30 mm i LDH > 300 U/L; klaster 1 (“RVSP ASCAOVS”), koji se razlikuje od ostalih na osnovu sistolnog pritiska desne komore (RVSP), dijametra ascedentne aorte (AscAO), i separacije aortnih kuspisa (AOvs), pri čemu su vrednosti AOvs > 27 m/s, AscAO 95 kg; i klaster 3 (“AV LVOT PG”) koji se razlikuje od ostalih na osnovu srednjeg gradijenta pritisaka nad aortnom valvulom (AV meanPG), maksimalnog gradijenta pritisaka nad aortnom valvulom (AV maxPG), i maksimalnog gradijenta pritisaka nad izlaznim traktom leve komore (LVOT maxPG), pri čemu su vrednosti AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, i LVOT maxPG > 15 mmHg. Algoritmi mašinskog učenja su potvrdili da utvrđivanje povezanosti genotipa i fenotipa HCM nije jednostavan zadatak. Predikcija ishoda fenotipa na osnovu informacije o mutiranim genima je moguća za prisustvo ili odsustvo sinusnog ritma i prisustvo ili odsustvo oštećenja miokarda. Modeli koji vrše predikciju prisustva ili odsustva sinusnog ritma su imali slične performanse kada su izrađeni samo na osnovu uzročnih gena za HCM i kada su izrađeni na osnovu svih analiziranih gena što sugeriše mogući značaj uzročnih gena za HCM i irelevantnost drugih analiziranih gena za ovaj ishod. Modeli koji vrše predikciju oštećenja miokarda su imali bolje performanse kada su korišćeni podaci o svim analiziranim genima (a ne samo o uzročnim genima za HCM), što sugeriše moguću važnu ulogu gena koji nisu uzročni, za ovaj ishod. Algoritmi mašinskog učenja su izvršili predikciju sledećih ishoda na osnovu podataka o genotipu i fenotipu: zamor, dispneja, bol u grudima, palpitacije, sinkopa, šum na srcu, pretibijalni edem, pokretanje mitralnog zalistka unapred (SAM), abnormalnost papilarnih mišića, hipokinezija, atrijalna fibrilacija, atrioventrikularni blok prvog stepena, blok leve grane (LBBB), blok desne grane (RBBB), prednji levi hemiblok, abnormalnosti ST segmenta, i negativni T talas. Prilikom predikcije zamora, najveći doprinos je imala kombinacija mutacije u TNNT2 i maksimalnog odnosa disajne razmene (RER). Prilikom predikcije dispneje najveći doprinos imala je kombinacija mutacije u MYBPC3 i vršne potrošnje kiseonika (peak VO2). Prilikom predikcije bola u grudima, najveći doprinos je imala kombinacija mutacije u TNNI3 i koncentracije lipoproteina visoke gustine (eng. high-density lipoprotein, HDL). Prilikom predikcije šuma na srcu najveći doprinos imala je kombinacija mutacije u MYH7 i podatka o implantiranju pejsmejkera/defibrilatora u porodičnoj istoriji, kao i kombinacija mutacije u TNNT2 i zapremine leve pretkomore (LAV). Prilikom predikcije negativnog T talasa, najveći doprinos imala je kombinacija mutacije u MYBPC3 i vrednosti transmitralnog maksimalnog gradijenta pritiska (MV maxPG). Identifikovani su genotip-specifični nalazi ehokardiograma: za mutaciju u MYH7 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima), strukture koje najviše utiču na raspoznavanje su septum, izlazni trakt leve komore (LVOT), prednji zid, vrh srca, desna komora i mitralni aparat; za mutaciju u TNNT2 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) strukture koje najviše utiču na raspoznavanje su septum i desna komora; dok su za mutaciju u MYBPC3 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) ove strukture septum, leva komora i šupljina leve komore. Mašinsko učenje je na ovaj način doprinelo u određenoj meri izučavanju povezanosti genotipa i fenotipa HCM

    Utvrđivanje povezanosti genotipa i fenotipa hipertrofične kardiomiopatije primenom mašinskog učenja

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most prevailing heritable cardiomyopathy. HCM is diagnosed by the existence of left ventricular hypertrophy despite the lack of abnormal loading conditions causing it. HCM is a heterogeneous disease regarding genetic mutations. Clinical manifestations and prognosis vary widely as well. Some patients are completely asymptomatic, in some others, severe heart failure and sudden cardiac death may arise. Definitive genotype-phenotype associations are still unknown. Machine learning (ML) is a subdiscipline of artificial intelligence, wherein computer algorithms are used for learning complex patterns from data. The aim of this research was to decipher genotype-phenotype associations in HCM using ML. The study was multi-centric and retroprospective, and involved 143 adult HCM patients. Medical and family history, anthropometric measurements, genetic testing, blood markers, transthoracic echocardiography with Doppler, cardiopulmonary exercise testing (CPET), ECG and ECG-holter-monitoring data were collected and further analysed. HCM subphenotypes were identified using clustering. Associations of genotype and phenotype were evaluated used Python modules Scikit-learn and SHapley Additive exPlanation (SHAP). Genotype-specific echocardiogram findings were identified using Python deep learning (DL) and computer vision library Fast AI, by generation of DL models for classification of ultrasonic images, and later analysis of the most decisive image regions. Four HCM subtypes were identified based on the overall phenotypic appearance: cluster 0 (“AHOLD”), distinguishable by aortic root diameter (AO) and lactate dehydrogenase (LDH), with values mostly AO > 30 mm, and LDH > 300 U/L; cluster 1 (“RVSP ASCAOVS”), distinguishable by right ventricle systolic pressure (RVSP), diameter of ascending aorta (AscAO), and aortic leaflet separation diameter (AOvs), with the values of RVSP 27 m/s; cluster 2 (“weight”), recognizable by weight, wherein values being mostly > 95 kg; and cluster 3 (“AV LVOT PG”) distinguishable by aortic valve mean pressure gradient (AV meanPG), aortic valve peak pressure gradient (AV maxPG), and left ventricular outflow tract peak gradient (LVOT maxPG) wherein AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, and LVOT maxPG > 15 mmHg. ML algorithms confirmed that the determination of genotype-phenotype associations in HCM is a cumbersome task. Two phenotypic outcomes that can be predicted from mutated genes are the absence or presence of sinus rhythm and the absence or presence of myocardial injury. Models predicting the absence or presence of sinus rhythm had similar performance when they were built using only causative genes and when using all analyzed genes, indicating potential importance of causative genes and irrelevance of non-causative genes for that outcome. On the other hand, models predicting myocardial injury — infarction had better performance when they were built using all analyzed genes (and not just causative ones), indicating a potentially significant role of non-causative genes in that outcome. The ML algorithms were able to predict phenotypic outcomes — fatigue, dyspnea, chest pain, palpitations, syncope, heart murmur, pretibial edema, systolic anterior motion, papillary muscle abnormalities, hypokinesia, atrial fibrillation (AF), first-degree atrioventricular (AV) block, left bundle branch block (LBBB), right bundle branch block (RBBB), left anterior hemiblock, ST segment abnormalities, and negative T wave — using genotypic and phenotypic data. The combination of a mutation in TNNT2 and peak respiratory exchange ratio (RER) contributed the most in predicting fatigue. The combination of a mutation in MYBPC3 and peak VO2 contributed the most in predicting dyspnea. The combination of a mutation in TNNI3 and high-density lipoprotein (HDL) level contributed the most in predicting chest pain. The combination of a mutation in MYH7 and pacemaker/defibrillator implants in family history, as well as the combination of a mutation in TNNT2 and left atrial volume (LAV), contributed the most in predicting heart murmur. Lastly, the combination of a mutation in MYBPC3 and transmitral maximal pressure gradient (MV maxPG) aided the most in predicting negative T wave. Genotype-specific echocardiogram findings were identified: for mutations in the MYH7 gene (vs. mutation not detected), the most discriminative structures are the left ventricular outflow tract, septum, anterior wall, apex, right ventricle, and mitral apparatus; for mutations in the TNNT2 gene (vs. mutation not detected), the most discriminative structures are septum and right ventricle; while for mutations in MYBPC3 gene (vs. mutation not detected) these are septum, left ventricle, and left ventricle chamber. ML has thus been demonstrated to be useful in deciphering genotype-phenotype associations in HCM.Hipertrofična kardiomiopatija (HCM) je najčešća nasledna kardiomiopatija. Dijagnoza HCM se postavlja na osnovu prisustva hipertrofije leve komore, uz isključivanje drugih uzroka hipertrofije. U pogledu genetičkih mutacija, HCM je heterogena bolest. Kliničke manifestacije i prognoza takođe mogu da budu veoma različite. Kod nekih pacijenata HCM je potpuno asimptomatska, dok kod drugih mogu da se razviju teška srčana insuficijencija i iznenadna srčana smrt. Povezanost genotipa i fenotipa HCM još uvek nije u potpunosti utvrđena. Mašinsko učenje je subdisciplina veštačke inteligencije u kojoj se kompjuterski algoritmi koriste za učenje kompleksnih šablona iz podataka. Cilj ovog istraživanja je bilo utvrđivanje povezanosti genotipa i fenotipa HCM primenom mašinskog učenja. Studija je bila multicentrična i retroprospektivna, obuhvatila je 143 odrasla pacijenta sa potvrđenom dijagnozom HCM. Anamnestički podaci, antropometrijska merenja, rezultati genetičkog testiranja, biohemijskih analiza, nalazi transtorakalne ehokardiografije sa doplerom, kardiopulmonalnog testa fizičkim opterećenjem, elektrokardiograma (EKG) i EKG-holter-monitoringa su prikupljeni i korišćeni u daljoj analizi. HCM subfenotipi su identifikovani klasterizacijom. Povezanost genotipa i fenotipa je evaluirana korišćenjem Python modula Scikit-learn i SHapley Additive exPlanation (SHAP). Genotip-specifični nalazi ehokardiograma su identifikovani korišćenjem Python biblioteke za duboko učenje i računarski vid Fast AI, izradom modela za klasifikaciju ehokardiograma i naknadnom analizom regiona koji su najviše doprineli razlikovanju klasa. Četiri podtipa HCM su identifikovana na osnovu svih dostupnih podataka o fenotipu: klaster 0 (“AHOLD”), koji se razlikuje od ostalih na osnovu prečnika korena aorte (AO) i laktat dehidrogenaze (LDH), pri čemu su vrednosti AO > 30 mm i LDH > 300 U/L; klaster 1 (“RVSP ASCAOVS”), koji se razlikuje od ostalih na osnovu sistolnog pritiska desne komore (RVSP), dijametra ascedentne aorte (AscAO), i separacije aortnih kuspisa (AOvs), pri čemu su vrednosti AOvs > 27 m/s, AscAO 95 kg; i klaster 3 (“AV LVOT PG”) koji se razlikuje od ostalih na osnovu srednjeg gradijenta pritisaka nad aortnom valvulom (AV meanPG), maksimalnog gradijenta pritisaka nad aortnom valvulom (AV maxPG), i maksimalnog gradijenta pritisaka nad izlaznim traktom leve komore (LVOT maxPG), pri čemu su vrednosti AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, i LVOT maxPG > 15 mmHg. Algoritmi mašinskog učenja su potvrdili da utvrđivanje povezanosti genotipa i fenotipa HCM nije jednostavan zadatak. Predikcija ishoda fenotipa na osnovu informacije o mutiranim genima je moguća za prisustvo ili odsustvo sinusnog ritma i prisustvo ili odsustvo oštećenja miokarda. Modeli koji vrše predikciju prisustva ili odsustva sinusnog ritma su imali slične performanse kada su izrađeni samo na osnovu uzročnih gena za HCM i kada su izrađeni na osnovu svih analiziranih gena što sugeriše mogući značaj uzročnih gena za HCM i irelevantnost drugih analiziranih gena za ovaj ishod. Modeli koji vrše predikciju oštećenja miokarda su imali bolje performanse kada su korišćeni podaci o svim analiziranim genima (a ne samo o uzročnim genima za HCM), što sugeriše moguću važnu ulogu gena koji nisu uzročni, za ovaj ishod. Algoritmi mašinskog učenja su izvršili predikciju sledećih ishoda na osnovu podataka o genotipu i fenotipu: zamor, dispneja, bol u grudima, palpitacije, sinkopa, šum na srcu, pretibijalni edem, pokretanje mitralnog zalistka unapred (SAM), abnormalnost papilarnih mišića, hipokinezija, atrijalna fibrilacija, atrioventrikularni blok prvog stepena, blok leve grane (LBBB), blok desne grane (RBBB), prednji levi hemiblok, abnormalnosti ST segmenta, i negativni T talas. Prilikom predikcije zamora, najveći doprinos je imala kombinacija mutacije u TNNT2 i maksimalnog odnosa disajne razmene (RER). Prilikom predikcije dispneje najveći doprinos imala je kombinacija mutacije u MYBPC3 i vršne potrošnje kiseonika (peak VO2). Prilikom predikcije bola u grudima, najveći doprinos je imala kombinacija mutacije u TNNI3 i koncentracije lipoproteina visoke gustine (eng. high-density lipoprotein, HDL). Prilikom predikcije šuma na srcu najveći doprinos imala je kombinacija mutacije u MYH7 i podatka o implantiranju pejsmejkera/defibrilatora u porodičnoj istoriji, kao i kombinacija mutacije u TNNT2 i zapremine leve pretkomore (LAV). Prilikom predikcije negativnog T talasa, najveći doprinos imala je kombinacija mutacije u MYBPC3 i vrednosti transmitralnog maksimalnog gradijenta pritiska (MV maxPG). Identifikovani su genotip-specifični nalazi ehokardiograma: za mutaciju u MYH7 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima), strukture koje najviše utiču na raspoznavanje su septum, izlazni trakt leve komore (LVOT), prednji zid, vrh srca, desna komora i mitralni aparat; za mutaciju u TNNT2 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) strukture koje najviše utiču na raspoznavanje su septum i desna komora; dok su za mutaciju u MYBPC3 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) ove strukture septum, leva komora i šupljina leve komore. Mašinsko učenje je na ovaj način doprinelo u određenoj meri izučavanju povezanosti genotipa i fenotipa HCM

    Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). It gives an overview of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to understanding and reducing landslide disaster risk

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Choreographing the extended agent : performance graphics for dance theater

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (v. 2, leaves 448-458).The marriage of dance and interactive image has been a persistent dream over the past decades, but reality has fallen far short of potential for both technical and conceptual reasons. This thesis proposes a new approach to the problem and lays out the theoretical, technical and aesthetic framework for the innovative art form of digitally augmented human movement. I will use as example works a series of installations, digital projections and compositions each of which contains a choreographic component - either through collaboration with a choreographer directly or by the creation of artworks that automatically organize and understand purely virtual movement. These works lead up to two unprecedented collaborations with two of the greatest choreographers working today; new pieces that combine dance and interactive projected light using real-time motion capture live on stage. The existing field of"dance technology" is one with many problems. This is a domain with many practitioners, few techniques and almost no theory; a field that is generating "experimental" productions with every passing week, has literally hundreds of citable pieces and no canonical works; a field that is oddly disconnected from modern dance's history, pulled between the practical realities of the body and those of computer art, and has no influence on the prevailing digital art paradigms that it consumes.(cont.) This thesis will seek to address each of these problems: by providing techniques and a basis for "practical theory"; by building artworks with resources and people that have never previously been brought together, in theaters and in front of audiences previously inaccessible to the field; and by proving through demonstration that a profitable and important dialogue between digital art and the pioneers of modern dance can in fact occur. The methodological perspective of this thesis is that of biologically inspired, agent-based artificial intelligence, taken to a high degree of technical depth. The representations, algorithms and techniques behind such agent architectures are extended and pushed into new territory for both interactive art and artificial intelligence. In particular, this thesis ill focus on the control structures and the rendering of the extended agents' bodies, the tools for creating complex agent-based artworks in intense collaborative situations, and the creation of agent structures that can span live image and interactive sound production. Each of these parts becomes an element of what it means to "choreograph" an extended agent for live performance.Marc Downie.Ph.D
    corecore