1,032 research outputs found

    The use of digital maps for the evaluation and improvement of a bicycle-network and infrastructure

    Get PDF
    Een duurzaam mobiliteitsbeleid gaat gepaard met het stimuleren van fietsgebruik. Potentiële fietsers haken echter vaak af omdat de veiligheid en het rijcomfort van fietspaden langs de Vlaamse wegen te wensen over laat. Een oplossing om de veiligheid van fietspaden te verhogen, is het optimaliseren van de kwaliteit van de fietsinfrastructuur langsheen een fietsroutenetwerk. Rekening houdend met de omvang van zo’n fietsroutenetwerk, is het essentieel om te bepalen op welke locaties de nood aan een verbetering van de infrastructuur van prioritair belang is. In dit artikel wordt een methodologie voorgesteld voor de evaluatie van de fietspadeninfrastructuur en het detecteren van de ernst van knelpunten langsheen het fietsroutenetwerk. De ontwikkelde methodologie berekent de knelpunten in het netwerk aan de hand van een Geografisch Informatie Systeem (GIS). De knelpunten worden bepaald door de afwijking te berekenen van de bestaande fietsinfrastructuur ten opzichte van een vereiste - en dus veiligere - infrastructuur. Als toetsingscriteria werd het Vademecum Fietsvoorziening, een document van de Vlaamse overheid, gebruikt. Dit vademecum beschrijft de vereiste fietsinfrastructuur afhankelijk van karakteristieken van de aanliggende weg. Een eerste stap is het selecteren van alle relevante criteria die bepalend zijn voor de veiligheid van het fietspad. Vervolgens wordt een inventaris opgesteld van alle attributen langsheen het wegennetwerk. Elk attribuut (bijv. de breedte van het fietspad) wordt geëvalueerd een draagt geheel of gedeeltelijke bij tot de ernst van een knelpunt. Aan de hand van een multi-criteria analyse wordt een knelpuntenscore berekend voor elk stuk fietspad in het netwerk. De resultaten worden gevisualiseerd op een kaart. Dit onderzoek kadert binnen het mobiliteitsbeleid van de stad Gent, en is een deel van een prioriteitenkaart die aanduid welke fietspaden als eerste dienen (her)aangelegd te worden

    Real-time simulation of surgery by Proper Generalized Decomposition techniques

    Get PDF
    La simulación quirúrgica por ordenador en tiempo real se ha convertido en una alternativa muy atractiva a los simuladores quirúrgicos tradicionales. Entre otras ventajas, los simuladores por ordenador consiguen ahorros importantes de tiempo y de costes de mantenimiento, y permiten que los estudiantes practiquen sus habilidades quirúrgicas en un entorno seguro tantas veces como sea necesario. Sin embargo, a pesar de las capacidades de los ordenadores actuales, la cirugía computacional sigue siendo un campo de investigación exigente. Uno de sus mayores retos es la alta velocidad a la que se tienen que resolver complejos problemas de mecánica de medios continuos para que los interfaces hápticos puedan proporcionar un sentido del tacto realista (en general, se necesitan velocidades de respuesta de 500-1000 Hz).Esta tesis presenta algunos métodos numéricos novedosos para la simulación interactiva de dos procedimientos quirúrgicos habituales: el corte y el rasgado (o desgarro) de tejidos blandos. El marco común de los métodos presentados es el uso de la Descomposición Propia Generalizada (PGD en inglés) para la generación de vademécums computacionales, esto es, metasoluciones generales de problemas paramétricos de altas dimensiones que se pueden evaluar a velocidades de respuesta compatibles con entornos hápticos.En el caso del corte, los vademécums computacionales se utilizan de forma conjunta con técnicas basadas en XFEM, mientras que la carga de cálculo se distribuye entre una etapa off-line (previa a la ejecución interactiva) y otra on-line (en tiempo de ejecución). Durante la fase off-line, para el órgano en cuestión se precalculan tanto un vademécum computacional para cualquier posición de una carga, como los desplazamientos producidos por un conjunto de cortes. Así, durante la etapa on-line, los resultados precalculados se combinan de la forma más adecuada para obtener en tiempo real la respuesta a las acciones dirigidas por el usuario. En cuanto al rasgado, a partir de una ecuación paramétrica basada en mecánica del daño continuo, se obtiene un vademécum computacional. La complejidad del modelo se reduce mediante técnicas de Descomposición Ortogonal Propia (POD en inglés), y el vademécum se incorpora a una formulación incremental explícita que se puede interpretar como una especie de integrador temporal.A modo de ejemplo, el método para el corte se aplica a la simulación de un procedimiento quirúrgico refractivo de la córnea conocido como queratotomía radial, mientras que el método para el rasgado se centra en la simulación de la colecistectomía laparoscópica (la extirpación de la vesícula biliar mediante laparoscopia). En ambos casos, los métodos implementados ofrecen excelentes resultados en términos de velocidades de respuesta y producen simulaciones muy realistas desde los puntos de vista visual y háptico.The real-time computer-based simulation of surgery has proven to be an appealing alternative to traditional surgical simulators. Amongst other advantages, computer-based simulators provide considerable savings on time and maintenance costs, and allow trainees to practice their surgical skills in a safe environment as often as necessary. However, in spite of the current computer capabilities, computational surgery continues to be a challenging field of research. One of its major issues is the high speed at which complex problems in continuum mechanics have to be solved so that haptic interfaces can render a realistic sense of touch (generally, feedback rates of 500–1 000 Hz are required). This thesis introduces some novel numerical methods for the interactive simulation of two usual surgical procedures: cutting and tearing of soft tissues. The common framework of the presented methods is the use of the Proper Generalised Decomposition (PGD) for the generation of computational vademecums, i. e. general meta-solutions of parametric high-dimensional problems that can be evaluated at feedback rates compatible with haptic environments. In the case of cutting, computational vademecums are used jointly with XFEM-based techniques, and the computing workload is distributed into an off-line and an on-line stage. During the off-line stage, both a computational vademecum for any position of a load and the displacements produced by a set of cuts are pre-computed for the organ under consideration. Thus, during the on-line stage, the pre-computed results are properly combined together to obtain in real-time the response to the actions driven by the user. Concerning tearing, a computational vademecum is obtained from a parametric equation based on continuum damage mechanics. The complexity of the model is reduced by Proper Orthogonal Decomposition (POD) techniques, and the vademecum is incorporated into an explicit incremental formulation that can be viewed as a sort of time integrator. By way of example, the cutting method is applied to the simulation of a corneal refractive surgical procedure known as radial keratotomy, whereas the tearing method focuses on the simulation of laparoscopic cholecystectomy (i. e. the removal of the gallbladder). In both cases, the implemented methods offer excellent performances in terms of feedback rates, and produce.<br /

    Not just paper: enhancement of archive cultural heritage

    Get PDF
    Oral archives and digital technologies have gone hand-in-hand for a very long time. Both sides benefit from this interdisciplinary junction: technology enhances the preservation and diffusion of oral materials, while exploiting them to develop cutting-edge tools for their treatment. This chapter deals with an Italian instantiation of this mutual relationship: the Archivio Vi.Vo. project. Offering innovative solutions concerning metadata, audio restoration, description , and access, Archivio Vi.Vo. aims to build an online platform to host the oral archives from Tuscany. The project is powered by CLARIN-IT, which guarantees its compliance with standards and offers resources for data access and discov-erability. Archivio Vi.Vo. has not been built from scratch: it is instead a cross-fertilization of previous initiatives and research projects (e.g., the Gra.fo project). Moreover, the chapter presents the related, contemporary work of a multidisciplinary group striving to synthesize a Vademecum for future generations of oral archive researchers. Lastly, a brief list of tentative ideas for future developments of the Archivio Vi.Vo. platform will be presented

    Simulation tools for biomechanical applications with PGD-based reduced order models

    Get PDF
    Cotutela Universitat Politècnica de Catalunya i Università degli Studi di PaviaNumerical simulation tools are generally used in all modern engineering fields, especially those having difficulties in performing large number of practical experiments, such as biomechanics. Among the computational methods, Finite Element (FE) is an essential tool. Nowadays, the fast-growing computational techniques, from the upgrading hardware to the emerging of novel algorithm, have already enabled extensive applications in biomechanics. For applications that require fast response and/or multiple queries, Reduced Order Modelling (ROM) methods have been developed based on existing methods such as FE, and have eventually enabled real-time numerical simulation for a large variety of engineering problems. In this thesis, several novel computational techniques are developed to explore the capability of Proper Generalised Decomposition (PGD), which is an important approach of ROM. To assess the usability of the PGD-based ROM for biomechanical applications, a real human femur bone is chosen to study its mechanical behaviour as an example. Standard image-based modelling procedure in biomechanics is performed to create an FE model which is then validated with in vitro experimental results. As a basis of this work, the medical image processing has to be performed, in order to generate an available FE model. This model is validated according to data collected from a previously performed \textit{in vitro} experimental test. The full procedure of image-based model generation and the validation of generated model is described in Chapter 2. As a major objective of this thesis, a non-intrusive scheme for the PGD framework is developed in Chapter 3. It is implemented using in-house developed Matlab (Mathworks, USA) code to conduct the PGD work flow, and calling Abaqus as an external solver for devised fictitious mechanical problems. The transformation of data from computed tomography (CT) image set to FE model including inhomogeneous material properties is subjected to some physical constraints, and when applying the load, there are also geometric constraints limiting the locations where load could be applied. These constraints will lead to a constrained parameter space, which possibly has difficulty to be separated in a Cartesian fashion. Therefore, a novel strategy to separate the parameters in a collective manner is proposed in Chapter 4. Chapter 5 details a comprehensive application in biomechanics, the methodologies proposed in Chapter 3 and 4 are applied on the practical model generated in Chapter 2. As a typical application of the PGD vademecum, a material property identification problem is discussed. Further PGD vademecum is generated using the identified material properties with variable loading locations, and with this vademecum, real-time mechanical response of the femur is available. In addition, for the purpose of extending the methodologies to orthotropic materials, which is commonly used in biomechanics, in Chapter 6 another linear elastic model is investigated with the non-intrusive PGD scheme. Nowadays, isogeometric analysis (IGA) is a very popular tool in computational mechanics. It is appealing to take advantage of non-uniform rational B-splines (NURBS) to discretise the model. For PGD, using B-splines for the discretisation of the parameter space could improve the quality of vademecum, especially for problems involving sensitivities with respect to the parameters during the online computations. It is important and necessary to extend the PGD framework to nonlinear solid mechanics, because most biological soft tissues have been observed nonlinear mechanical behaviours. Consequently, in Chapter 7 we have developed a PGD framework for the St.Venant-Kirchhoff constitutive model using the Picard linearisation which is consistent with the fixed-point iteration algorithm commonly used in PGD. In Chapter 8, conclusive remarks are addressed as well as forecasts of possible future works.Postprint (published version

    Vademecum:77 Minor Terms for Writing Urban Places

    Get PDF
    • …
    corecore