8,198 research outputs found

    Degradation in FPGAs: Monitoring, Modeling and Mitigation

    Get PDF
    This dissertation targets the transistor aging degradation as well as the associated thermal challenges in FPGAs (since there is an exponential relation between aging and chip temperature). The main objectives are to perform experimentation, analysis and device-level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow to mitigate the aging

    The design and implementation of PowerMill

    Full text link
    In this paper we discuss the design and implemen-tation of the simulator PowerMill, a novel transistor level simulator for the simulation of current and power behavior in vlsi circuits. With a new transistor mod-eling technology and a versatile event driven simu-lation algorithm, PowerMill is capable of simulating detailed current behavior in modern deep-submicron cmos circuits, including sophisticated circuitries such as exclusive-or gates and sense-ampliers, with speed and capacity approaching conventional gate level sim-ulators. The high accuracy and speed have made it possible for designers to study and verify detailed cur-rent behavior of large functional blocks or even an en-tire chip with a reasonable amount of CPU resources, making it a de facto industry standard for power sim-ulation.

    Advanced engineering - Supporting research and technology

    Get PDF
    Telemetry simulations, radar equipment and experiments, and related supporting research for Deep Space Networ

    Gate-level timing analysis and waveform evaluation

    Get PDF
    Static timing analysis (STA) is an integral part of modern VLSI chip design. Table lookup based methods are widely used in current industry due to its fast runtime and mature algorithms. Conventional STA algorithms based on table-lookup methods are developed under many assumptions in timing analysis; however, most of those assumptions, such as that input signals and output signals can be accurately modeled as ramp waveforms, are no longer satisfactory to meet the increasing demand of accuracy for new technologies. In this dissertation, we discuss several crucial issues that conventional STA has not taken into consideration, and propose new methods to handle these issues and show that new methods produce accurate results. In logic circuits, gates may have multiple inputs and signals can arrive at these inputs at different times and with different waveforms. Different arrival times and waveforms of signals can cause very different responses. However, multiple-input transition effects are totally overlooked by current STA tools. Using a conventional single-input transition model when multiple-input transition happens can cause significant estimation errors in timing analysis. Previous works on this issue focus on developing a complicated gate model to simulate the behavior of logic gates. These methods have high computational cost and have to make significant changes to the prevailing STA tools, and are thus not feasible in practice. This dissertation proposes a simplified gate model, uses transistor connection structures to capture the behavior of multiple-input transitions and requires no change to the current STA tools. Another issue with table lookup based methods is that the load of each gate in technology libraries is modeled as a single lumped capacitor. But in the real circuit, the Abstract 2 gate connects to its subsequent gates via metal wires. As the feature size of integrated circuit scales down, the interconnection cannot be seen as a simple capacitor since the resistive shielding effect will largely affect the equivalent capacitance seen from the gate. As the interconnection has numerous structures, tabulating the timing data for various interconnection structures is not feasible. In this dissertation, by using the concept of equivalent admittance, we reduce an arbitrary interconnection structure into an equivalent π-model RC circuit. Many previous works have mapped the π-model to an effective capacitor, which makes the table lookup based methods useful again. However, a capacitor cannot be equivalent to a π-model circuit, and will thus result in significant inaccuracy in waveform evaluation. In order to obtain an accurate waveform at gate output, a piecewise waveform evaluation method is proposed in this dissertation. Each part of the piecewise waveform is evaluated according to the gate characteristic and load structures. Another contribution of this dissertation research is a proposed equivalent waveform search method. The signal waveforms can be very complicated in the real circuits because of noises, race hazards, etc. The conventional STA only uses one attribute (i.e., transition time) to describe the waveform shape which can cause significant estimation errors. Our approach is to develop heuristic search functions to find equivalent ramps to approximate input waveforms. Here the transition time of a final ramp can be completely different from that of the original waveform, but we can get higher accuracy on output arrival time and transition time. All of the methods mentioned in this dissertation require no changes to the prevailing STA tools, and have been verified across different process technologies

    FPGA Architecture Optimization Using Geometric Programming

    Get PDF
    Volume 4 No 13 of the periodical Progression. Published November, February, May and August by The Radiant Healing Centre. SPCL PER BT 732 P76 V.1,1932-V.5,193

    Subthreshold and gate leakage current analysis and reduction in VLSI circuits

    Get PDF
    CMOS technology has scaled aggressively over the past few decades in an effort to enhance functionality, speed and packing density per chip. As the feature sizes are scaling down to sub-100nm regime, leakage power is increasing significantly and is becoming the dominant component of the total power dissipation. Major contributors to the total leakage current in deep submicron regime are subthreshold and gate tunneling leakage currents. The leakage reduction techniques developed so far were mostly devoted to reducing subthreshold leakage. However, at sub-65nm feature sizes, gate leakage current grows faster and is expected to surpass subthreshold leakage current. In this work, an extensive analysis of the circuit level characteristics of subthreshold and gate leakage currents is performed at 45nm and 32nm feature sizes. The analysis provides several key observations on the interdependency of gate and subthreshold leakage currents. Based on these observations, a new leakage reduction technique is proposed that optimizes both the leakage currents. This technique identifies minimum leakage vectors for a given circuit based on the number of transistors in OFF state and their position in the stack. The effectiveness of the proposed technique is compared to most of the mainstream leakage reduction techniques by implementing them on ISCAS89 benchmark circuits. The proposed leakage reduction technique proved to be more effective in reducing gate leakage current than subthreshold leakage current. However, when combined with dual-threshold and variable-threshold CMOS techniques, substantial subthreshold leakage current reduction was also achieved. A total savings of 53% for subthreshold leakage current and 26% for gate leakage current are reported

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente
    • …
    corecore