896 research outputs found

    Evaluation Study of a Distributed Caching Based on Query Similarity in a P2P Network

    Get PDF
    ABSTRACT Several caching techniques have been used to reduce the bandwidth consumption and to provide faster answers in P2P systems. In this paper, we address the problem of reducing unnecessary traffic in the Hybrid Overlay Network (HON), which consists in organizing peers and data in an n-dimensional feature space for efficient similarity search. We propose a distributed caching schema that group similar queries to increase the success hit and avoid redundancy. We show through extensive simulations that caching in HON decreases significantly the query scope improving search performance

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Multimedia Correlation Analysis in Unstructured Peer-to-Peer Network

    Get PDF
    Recent years saw the rapid development of peer-topeer (P2P) networks in a great variety of applications. However, similarity-based k-nearest-neighbor retrieval (k-NN) is still a challenging task in P2P networks due to the multiple constraints such as the dynamic topologies and the unpredictable data updates. Caching is an attractive solution that reduces network traffic and hence could remedy the technological constraints of P2P networks. However, traditional caching techniques have some major shortcomings that make them unsuitable for similarity search, such as the lack of semantic locality representation and the rigidness of exact matching on data objects. To facilitate the efficient similarity search, we propose semantic-aware caching scheme (SAC) in this paper. The proposed scheme is hierarchy-free, fully dynamic, non-flooding, and do not add much system overhead. By exploring the content distribution, SAC drastically reduces the cost of similarity-based k-NN retrieval in P2P networks. The performance of SAC is evaluated through simulation study and compared against several search schemes as advanced in the literature

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    Reducing query overhead through route learning in unstructured peer-to-peer network

    Get PDF
    Cataloged from PDF version of article.In unstructured peer-to-peer networks, such as Gnutella, peers propagate query messages towards the resource holders by flooding them through the network. This is, however, a costly operation since it consumes node and link resources excessively and often unnecessarily. There is no reason, for example, for a peer to receive a query message if the peer has no matching resource or is not on the path to a peer holding a matching resource. In this paper, we present a solution to this problem, which we call Route Learning, aiming to reduce query traffic in unstructured peer-to-peer networks. In Route Learning, peers try to identify the most likely neighbors through which replies can be obtained to submitted queries. in this way, a query is forwarded only to a subset of the neighbors of a peer, or it is dropped if no neighbor, likely to reply, is found. The scheme also has mechanisms to cope with variations in user submitted queries, like changes in the keywords. The scheme can also evaluate the route for a query for which it is not trained. We show through simulation results that when compared to a pure flooding based querying approach, our scheme reduces bandwidth overhead significantly without sacrificing user satisfaction. (C) 2008 Elsevier Ltd. All rights reserved
    corecore