99,127 research outputs found

    Scaling up algorithmic debugging with virtual execution trees

    Full text link
    Declarative debugging is a powerful debugging technique that has been adapted to practically all programming languages. However, the technique suffers from important scalability problems in both time and memory. With realistic programs the huge size of the execution tree handled makes the debugging session impractical and too slow to be productive. In this work, we present a new architecture for declarative debuggers in which we adapt the technique to work with incomplete execution trees. This allows us to avoid the problem of loading the whole execution tree in main memory and solve the memory scalability problems. We also provide the technique with the ability to debug execution trees that are only partially generated. This allows the programmer to start the debugging session even before the execution tree is computed. This solves the time scalability problems. We have implemented the technique and show its practicality with several experiments conducted with real applications.Insa Cabrera, D.; Silva Galiana, JF. (2011). Scaling up algorithmic debugging with virtual execution trees. En Logic-Based Program Synthesis and Transformation. Springer Verlag (Germany). 6564:149-163. doi:10.1007/978-3-642-20551-4_10S1491636564Av-Ron, E.: Top-Down Diagnosis of Prolog Programs. PhD thesis, Weizmanm Institute (1984)Binks, D.: Declarative Debugging in Gödel. PhD thesis, University of Bristol (1995)Caballero, R.: A Declarative Debugger of Incorrect Answers for Constraint Functional-Logic Programs. In: Proc. of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp. 8–13. ACM Press, New York (2005)Caballero, R.: Algorithmic Debugging of Java Programs. In: Proc. of the 2006 Workshop on Functional Logic Programming (WFLP 2006). Electronic Notes in Theoretical Computer Science, pp. 63–76 (2006)Caballero, R., Martí-Oliet, N., Riesco, A., Verdejo, A.: A declarative debugger for maude functional modules. Electronic Notes Theoretical Computer Science 238(3), 63–81 (2009)Davie, T., Chitil, O.: Hat-delta: One Right Does Make a Wrong. In: Seventh Symposium on Trends in Functional Programming, TFP 2006 (April 2006)Girgis, H., Jayaraman, B.: JavaDD: a Declarative Debugger for Java. Technical Report 2006-07, University at Buffalo (March 2006)Kokai, G., Nilson, J., Niss, C.: GIDTS: A Graphical Programming Environment for Prolog. In: Workshop on Program Analysis For Software Tools and Engineering (PASTE 1999), pp. 95–104. ACM Press, New York (1999)MacLarty, I.: Practical Declarative Debugging of Mercury Programs. PhD thesis, Department of Computer Science and Software Engineering, The University of Melbourne (2005)Sun Microsystems. Java Platform Debugger Architecture - JPDA (2010), http://java.sun.com/javase/technologies/core/toolsapis/jpda/Nilsson, H., Fritzson, P.: Algorithmic Debugging for Lazy Functional Languages. Journal of Functional Programming 4(3), 337–370 (1994)Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1982)Silva, J.: An Empirical Evaluation of Algorithmic Debugging Strategies. Technical Report DSIC-II/10/09, UPV (2009), http://www.dsic.upv.es/~jsilva/research.htm#techsSilva, J.: Algorithmic debugging strategies. In: Proc. of International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR 2006), pp. 134–140 (2006)Silva, J.: A Comparative Study of Algorithmic Debugging Strategies. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 143–159. Springer, Heidelberg (2007

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    An Integrated Development Environment for Declarative Multi-Paradigm Programming

    Full text link
    In this paper we present CIDER (Curry Integrated Development EnviRonment), an analysis and programming environment for the declarative multi-paradigm language Curry. CIDER is a graphical environment to support the development of Curry programs by providing integrated tools for the analysis and visualization of programs. CIDER is completely implemented in Curry using libraries for GUI programming (based on Tcl/Tk) and meta-programming. An important aspect of our environment is the possible adaptation of the development environment to other declarative source languages (e.g., Prolog or Haskell) and the extensibility w.r.t. new analysis methods. To support the latter feature, the lazy evaluation strategy of the underlying implementation language Curry becomes quite useful.Comment: In A. Kusalik (ed), proceedings of the Eleventh International Workshop on Logic Programming Environments (WLPE'01), December 1, 2001, Paphos, Cyprus. cs.PL/011104
    corecore