11,755 research outputs found

    Comparative Evaluation of Community Detection Algorithms: A Topological Approach

    Full text link
    Community detection is one of the most active fields in complex networks analysis, due to its potential value in practical applications. Many works inspired by different paradigms are devoted to the development of algorithmic solutions allowing to reveal the network structure in such cohesive subgroups. Comparative studies reported in the literature usually rely on a performance measure considering the community structure as a partition (Rand Index, Normalized Mutual information, etc.). However, this type of comparison neglects the topological properties of the communities. In this article, we present a comprehensive comparative study of a representative set of community detection methods, in which we adopt both types of evaluation. Community-oriented topological measures are used to qualify the communities and evaluate their deviation from the reference structure. In order to mimic real-world systems, we use artificially generated realistic networks. It turns out there is no equivalence between both approaches: a high performance does not necessarily correspond to correct topological properties, and vice-versa. They can therefore be considered as complementary, and we recommend applying both of them in order to perform a complete and accurate assessment

    Generalized Markov stability of network communities

    Full text link
    We address the problem of community detection in networks by introducing a general definition of Markov stability, based on the difference between the probability fluxes of a Markov chain on the network at different time scales. The specific implementation of the quality function and the resulting optimal community structure thus become dependent both on the type of Markov process and on the specific Markov times considered. For instance, if we use a natural Markov chain dynamics and discount its stationary distribution -- that is, we take as reference process the dynamics at infinite time -- we obtain the standard formulation of the Markov stability. Notably, the possibility to use finite-time transition probabilities to define the reference process naturally allows detecting communities at different resolutions, without the need to consider a continuous-time Markov chain in the small time limit. The main advantage of our general formulation of Markov stability based on dynamical flows is that we work with lumped Markov chains on network partitions, having the same stationary distribution of the original process. In this way the form of the quality function becomes invariant under partitioning, leading to a self-consistent definition of community structures at different aggregation scales

    Enhancing community detection using a network weighting strategy

    Full text link
    A community within a network is a group of vertices densely connected to each other but less connected to the vertices outside. The problem of detecting communities in large networks plays a key role in a wide range of research areas, e.g. Computer Science, Biology and Sociology. Most of the existing algorithms to find communities count on the topological features of the network and often do not scale well on large, real-life instances. In this article we propose a strategy to enhance existing community detection algorithms by adding a pre-processing step in which edges are weighted according to their centrality w.r.t. the network topology. In our approach, the centrality of an edge reflects its contribute to making arbitrary graph tranversals, i.e., spreading messages over the network, as short as possible. Our strategy is able to effectively complements information about network topology and it can be used as an additional tool to enhance community detection. The computation of edge centralities is carried out by performing multiple random walks of bounded length on the network. Our method makes the computation of edge centralities feasible also on large-scale networks. It has been tested in conjunction with three state-of-the-art community detection algorithms, namely the Louvain method, COPRA and OSLOM. Experimental results show that our method raises the accuracy of existing algorithms both on synthetic and real-life datasets.Comment: 28 pages, 2 figure

    LASAGNE: Locality And Structure Aware Graph Node Embedding

    Full text link
    In this work we propose Lasagne, a methodology to learn locality and structure aware graph node embeddings in an unsupervised way. In particular, we show that the performance of existing random-walk based approaches depends strongly on the structural properties of the graph, e.g., the size of the graph, whether the graph has a flat or upward-sloping Network Community Profile (NCP), whether the graph is expander-like, whether the classes of interest are more k-core-like or more peripheral, etc. For larger graphs with flat NCPs that are strongly expander-like, existing methods lead to random walks that expand rapidly, touching many dissimilar nodes, thereby leading to lower-quality vector representations that are less useful for downstream tasks. Rather than relying on global random walks or neighbors within fixed hop distances, Lasagne exploits strongly local Approximate Personalized PageRank stationary distributions to more precisely engineer local information into node embeddings. This leads, in particular, to more meaningful and more useful vector representations of nodes in poorly-structured graphs. We show that Lasagne leads to significant improvement in downstream multi-label classification for larger graphs with flat NCPs, that it is comparable for smaller graphs with upward-sloping NCPs, and that is comparable to existing methods for link prediction tasks

    Hearing the clusters in a graph: A distributed algorithm

    Full text link
    We propose a novel distributed algorithm to cluster graphs. The algorithm recovers the solution obtained from spectral clustering without the need for expensive eigenvalue/vector computations. We prove that, by propagating waves through the graph, a local fast Fourier transform yields the local component of every eigenvector of the Laplacian matrix, thus providing clustering information. For large graphs, the proposed algorithm is orders of magnitude faster than random walk based approaches. We prove the equivalence of the proposed algorithm to spectral clustering and derive convergence rates. We demonstrate the benefit of using this decentralized clustering algorithm for community detection in social graphs, accelerating distributed estimation in sensor networks and efficient computation of distributed multi-agent search strategies
    corecore