18,287 research outputs found

    Fundamental Metrics for Wireless Sensor Networks localization

    Get PDF
    During the last decade, Localization in wireless sensor networks (WSNs) is a broad topic that has received considerable attention from the research community. The approaches suggested to estimate location are implemented with different concepts, functionalities, scopes and technologies. This paper introduces a methodological approach to the evaluation of localization algorithms and contains a discussion of evaluation criteria and performance metrics followed by statistical/ empirical simulation models and metrics that affect the performance of the algorithms and hence their assessment. The major contribution of this paper is to analyze and identify relevant metrics to compare different approaches on the evaluation of localization schemes.DOI:http://dx.doi.org/10.11591/ijece.v2i4.24

    Localisation of mobile nodes in wireless networks with correlated in time measurement noise.

    Get PDF
    Wireless sensor networks are an inherent part of decision making, object tracking and location awareness systems. This work is focused on simultaneous localisation of mobile nodes based on received signal strength indicators (RSSIs) with correlated in time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of the two proposed multi model auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localisation accuracy is demonstrated

    Locating sensors with fuzzy logic algorithms

    Get PDF
    In a system formed by hundreds of sensors deployed in a huge area it is important to know the position where every sensor is. This information can be obtained using several methods. However, if the number of sensors is high and the deployment is based on ad-hoc manner, some auto-locating techniques must be implemented. In this paper we describe a novel algorithm based on fuzzy logic with the objective of estimating the location of sensors according to the knowledge of the position of some reference nodes. This algorithm, called LIS (Localization based on Intelligent Sensors) is executed distributively along a wireless sensor network formed by hundreds of nodes, covering a huge area. The evaluation of LIS is led by simulation tests. The result obtained shows that LIS is a promising method that can easily solve the problem of knowing where the sensors are located.Junta de AndalucĂ­a P07-TIC-0247

    Color Filtering Localization for Three-Dimensional Underwater Acoustic Sensor Networks

    Full text link
    Accurate localization for mobile nodes has been an important and fundamental problem in underwater acoustic sensor networks (UASNs). The detection information returned from a mobile node is meaningful only if its location is known. In this paper, we propose two localization algorithms based on color filtering technology called PCFL and ACFL. PCFL and ACFL aim at collaboratively accomplishing accurate localization of underwater mobile nodes with minimum energy expenditure. They both adopt the overlapping signal region of task anchors which can communicate with the mobile node directly as the current sampling area. PCFL employs the projected distances between each of the task projections and the mobile node, while ACFL adopts the direct distance between each of the task anchors and the mobile node. Also the proportion factor of distance is proposed to weight the RGB values. By comparing the nearness degrees of the RGB sequences between the samples and the mobile node, samples can be filtered out. And the normalized nearness degrees are considered as the weighted standards to calculate coordinates of the mobile nodes. The simulation results show that the proposed methods have excellent localization performance and can timely localize the mobile node. The average localization error of PCFL can decline by about 30.4% than the AFLA method.Comment: 18 pages, 11 figures, 2 table
    • …
    corecore