20 research outputs found

    SISTEMA SOLAR PARA LA OPERACIÓN DE UN ROBOT AGRÍCOLA

    Get PDF
    En este artículo se presenta el diseño, desarrollo e implementación de un sistema solar completo a escala real, el cual consta de un seguidor solar tipo girasol con paneles fotovoltaicos que aumentan la cantidad de radiación solar recibida, y un sistema de control del punto de máxima potencia, el cual se basa en las curvas corriente-voltaje y potencia-voltaje que caracterizan los paneles fotovoltaicos para aumentar el rendimiento de los mismos. El sistema de generación de energía se encarga de alimentar un robot agrícola que ejecuta tareas de siembra, riego, fumigación, fertilización y recolección de plantas y frutos. Palabras clave: Sistema fotovoltaico, sistema girasol, optimización de energía, robótica, agricultura

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Assessing the potential of sentinel-1 and sentinel-2 satellite imagery for shoreline classification in support of oil spill preparedness and response

    Get PDF
    Coastal zones are critical ecosystems that provide important habitat for marine animals, fish, shellfish, birds, and many other species. However, there is a risk of mineral oil impacting in these areas due to human activities offshore. Shoreline classification is the first step to establishing response contingency plans in case of an oil spill. This study estimates the potential of using open-access, high-resolution Sentinel-1 and Sentinel-2 imagery for the mapping of shoreline types in support of oil spill preparedness and response activities. The two classification maps, depicting shoreline and coastal land cover, were produced using an advanced object-based Random Forest (RF) algorithm. Various features extracted from multi-source data, including spectral, texture, ratio, polarimetric features, and digital elevation model (DEM), were analyzed to identify the most valuable features for discrimination between different shoreline types. Multiple classification scenarios with the most useful features were then assessed and compared to find the best classification model. The developed algorithm achieved accuracies of 87.10% and 84.75% of coastal land cover and shoreline maps. These results demonstrated the high potential of using freely available Sentinel-1 and -2 satellite data for coastal mapping

    Evaluation of wind energy resources and wind power generation based on SAR-retrieved wind in the eastern sea area of Yancheng, Jiangsu, China

    No full text

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    The Legal, Administrative and Managing Framework for Spatial Policy, Planning and Land-Use. Interdependence, Barriers and Directions of Change

    Get PDF
    The book aims to explore the legal and administrative aspects of spatial governance and the challenges that their interaction entails. It does this through a number of chapters focusing on case studies located in different geographical areas of Europe and beyond. By doing this, the editors shed light on a set of challenges that emerge around the world at the intersection between the legal and administrative spheres during the governance and planning of territorial phenomena. The issues addressed in the various chapters highlight how spatial planning activities continue to face serious challenges that have not yet been satisfactorily addressed. In more detail, a correlation emerges between the legal regulations that allow and shape spatial-planning activities and the socio-economic and territorial challenges that those activities should tackle. This is often a consequence of the path-dependent influence of the traditional administrative and spatial planning configuration, which presents an inertial resistance to change that is hard to overcome. A similar situation arises concerning the mismatch between the boundaries of the existing administrative units and the extent of territorial phenomena, with a system of judicial–territorial administration that does not always coincide with the boundaries of the fundamental administrative division of a country, leading to an overall deterioration of the conditions in which all actors involved in spatial development operate

    Regulatory limitations and global stakeholder mapping of carbon capture and storage technology – a legal and multi-level perspective analysis

    Get PDF
    Carbon Capture and Sequestration Technology (CCS) is propounded as one of the key bridging technologies and temporary abatement measure in the battle against climate change. Not only is it based on well-established technology, used and improved upon for decades in the fossil fuels industry, but it also has the potential to remove vast quantities of CO2 from the atmosphere giving much needed alleviation away from climate tipping points. Despite these advantages, CCS has been slow to start and easy to stall, with financial risk and uncertainty, lack of regulatory cohesion and a disjointed policy mix all playing a part in impeding its commercialization. Systems Thinking and Transition Theory in particular have been widely adopted as methodologies which have the potential to elucidate the barriers to development in socio-technical systems of the likes of CCS. Using one such theory - Multi-Level Perspective Analysis - as an analytical framework, an in-depth investigation was performed of both the ‘Niche’ and ‘Regime’ of CCS. This was undertaken through a comprehensive legal and regulatory analysis and a global survey of 604 stakeholders involved in research and development throughout the technology chain. The combined examination of the legal and stakeholder system boundaries is used to set the ‘chessboard’ and ‘pieces’ upon which further analysis of the ‘combinations’ of moves open to CCS will be revealed. In essence, the regulatory and stakeholder configurations, which most lend themselves to CCS technology development, are explored and elucidated. This is done with the aim to address the knowledge gaps in the legal and regulatory requirements necessary for implementing CCS on a wider scale, as identified by the Intergovernmental Panel on Climate Change (IPCC, 2005).Open Acces

    Applied Ecology and Environmental Research 2020

    Get PDF

    XVIII International Coal Preparation Congress

    Get PDF
    Changes in economic and market conditions of mineral raw materials in recent years have greatly increased demands on the ef fi ciency of mining production. This is certainly true of the coal industry. World coal consumption is growing faster than other types of fuel and in the past year it exceeded 7.6 billion tons. Coal extraction and processing technology are continuously evolving, becoming more economical and environmentally friendly. “ Clean coal ” technology is becoming increasingly popular. Coal chemistry, production of new materials and pharmacology are now added to the traditional use areas — power industry and metallurgy. The leading role in the development of new areas of coal use belongs to preparation technology and advanced coal processing. Hi-tech modern technology and the increasing interna- tional demand for its effectiveness and ef fi ciency put completely new goals for the University. Our main task is to develop a new generation of workforce capacity and research in line with global trends in the development of science and technology to address critical industry issues. Today Russia, like the rest of the world faces rapid and profound changes affecting all spheres of life. The de fi ning feature of modern era has been a rapid development of high technology, intellectual capital being its main asset and resource. The dynamics of scienti fi c and technological development requires acti- vation of University research activities. The University must be a generator of ideas to meet the needs of the economy and national development. Due to the high intellectual potential, University expert mission becomes more and more called for and is capable of providing professional assessment and building science-based predictions in various fi elds. Coal industry, as well as the whole fuel and energy sector of the global economy is growing fast. Global multinational energy companies are less likely to be under state in fl uence and will soon become the main mechanism for the rapid spread of technologies based on new knowledge. Mineral resources will have an even greater impact on the stability of the economies of many countries. Current progress in the technology of coal-based gas synthesis is not just a change in the traditional energy markets, but the emergence of new products of direct consumption, obtained from coal, such as synthetic fuels, chemicals and agrochemical products. All this requires a revision of the value of coal in the modern world economy

    Corrosion and Degradation of Materials

    Get PDF
    Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss
    corecore