4,081 research outputs found

    Contributions of temporal encodings of voicing, voicelessness, fundamental frequency, and amplitude variation to audiovisual and auditory speech perception

    Get PDF
    Auditory and audio-visual speech perception was investigated using auditory signals of invariant spectral envelope that temporally encoded the presence of voiced and voiceless excitation, variations in amplitude envelope and F-0. In experiment 1, the contribution of the timing of voicing was compared in consonant identification to the additional effects of variations in F-0 and the amplitude of voiced speech. In audio-visual conditions only, amplitude variation slightly increased accuracy globally and for manner features. F-0 variation slightly increased overall accuracy and manner perception in auditory and audio-visual conditions. Experiment 2 examined consonant information derived from the presence and amplitude variation of voiceless speech in addition to that from voicing, F-0, and voiced speech amplitude. Binary indication of voiceless excitation improved accuracy overall and for voicing and manner. The amplitude variation of voiceless speech produced only a small increment in place of articulation scores. A final experiment examined audio-visual sentence perception using encodings of voiceless excitation and amplitude variation added to a signal representing voicing and F-0. There was a contribution of amplitude variation to sentence perception, but not of voiceless excitation. The timing of voiced and voiceless excitation appears to be the major temporal cues to consonant identity. (C) 1999 Acoustical Society of America. [S0001-4966(99)01410-1]

    Linguistic Optimization

    Get PDF
    Optimality Theory (OT) is a model of language that combines aspects of generative and connectionist linguistics. It is unique in the field in its use of a rank ordering on constraints, which is used to formalize optimization, the choice of the best of a set of potential linguistic forms. We show that phenomena argued to require ranking fall out equally from the form of optimization in OT's predecessor Harmonic Grammar (HG), which uses numerical weights to encode the relative strength of constraints. We further argue that the known problems for HG can be resolved by adopting assumptions about the nature of constraints that have precedents both in OT and elsewhere in computational and generative linguistics. This leads to a formal proof that if the range of each constraint is a bounded number of violations, HG generates a finite number of languages. This is nontrivial, since the set of possible weights for each constraint is nondenumerably infinite. We also briefly review some advantages of HG

    Low Frequency Ultrasonic Voice Activity Detection using Convolutional Neural Networks

    Get PDF
    Low frequency ultrasonic mouth state detection uses reflected audio chirps from the face in the region of the mouth to determine lip state, whether open, closed or partially open. The chirps are located in a frequency range just above the threshold of human hearing and are thus both inaudible as well as unaffected by interfering speech, yet can be produced and sensed using inexpensive equipment. To determine mouth open or closed state, and hence form a measure of voice activity detection, this recently invented technique relies upon the difference in the reflected chirp caused by resonances introduced by the open or partially open mouth cavity. Voice activity is then inferred from lip state through patterns of mouth movement, in a similar way to video-based lip-reading technologies. This paper introduces a new metric based on spectrogram features extracted from the reflected chirp, with a convolutional neural network classification back-end, that yields excellent performance without needing the periodic resetting of the template closed-mouth reflection required by the original technique

    Influence of classroom acoustics on the vocal behavior of teacers

    Get PDF
    Erroneous vocal behavior of teachers and their changes in the voice production due to poor acoustics in classrooms can be investigated through recently developed voice-monitoring devices. These devices are portable analyzers that use a miniature contact-microphone glued to the jugular notch in order to sense the skin acceleration level due to the vibration of the vocal folds. They estimate the Sound Pressure Level (SPL) at a certain distance from the speaker's mouth provided that a preliminary calibration procedure is performed, the fundamental frequency and the time dose. Two different devices are compared in this work: the former is a commercial device, whose phonation sensor is a small accelerometer; the latter, recently developed by the authors, uses an electret condenser microphone to sense the skin acceleration level. SPL and fundamental frequency are estimated over fixed-length frames and the results that refer to a sample of 25 primary school teachers and a university professor are analyzed. The duration of the voice and pause periods is investigated in order to detect the peaks of occurrence and accumulation in different conditions of reverberation. A method for the detection and analysis of the emphatic speech is also propose
    • …
    corecore