857 research outputs found

    Efficient Video Indexing on the Web: A System that Leverages User Interactions with a Video Player

    Full text link
    In this paper, we propose a user-based video indexing method, that automatically generates thumbnails of the most important scenes of an online video stream, by analyzing users' interactions with a web video player. As a test bench to verify our idea we have extended the YouTube video player into the VideoSkip system. In addition, VideoSkip uses a web-database (Google Application Engine) to keep a record of some important parameters, such as the timing of basic user actions (play, pause, skip). Moreover, we implemented an algorithm that selects representative thumbnails. Finally, we populated the system with data from an experiment with nine users. We found that the VideoSkip system indexes video content by leveraging implicit users interactions, such as pause and thirty seconds skip. Our early findings point toward improvements of the web video player and its thumbnail generation technique. The VideSkip system could compliment content-based algorithms, in order to achieve efficient video-indexing in difficult videos, such as lectures or sports.Comment: 9 pages, 3 figures, UCMedia 2010: 2nd International ICST Conference on User Centric Medi

    Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

    Full text link
    Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.Comment: Submitted for publicatio

    Video summarisation: A conceptual framework and survey of the state of the art

    Get PDF
    This is the post-print (final draft post-refereeing) version of the article. Copyright @ 2007 Elsevier Inc.Video summaries provide condensed and succinct representations of the content of a video stream through a combination of still images, video segments, graphical representations and textual descriptors. This paper presents a conceptual framework for video summarisation derived from the research literature and used as a means for surveying the research literature. The framework distinguishes between video summarisation techniques (the methods used to process content from a source video stream to achieve a summarisation of that stream) and video summaries (outputs of video summarisation techniques). Video summarisation techniques are considered within three broad categories: internal (analyse information sourced directly from the video stream), external (analyse information not sourced directly from the video stream) and hybrid (analyse a combination of internal and external information). Video summaries are considered as a function of the type of content they are derived from (object, event, perception or feature based) and the functionality offered to the user for their consumption (interactive or static, personalised or generic). It is argued that video summarisation would benefit from greater incorporation of external information, particularly user based information that is unobtrusively sourced, in order to overcome longstanding challenges such as the semantic gap and providing video summaries that have greater relevance to individual users

    Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities

    Full text link
    [EN] Fog computing is emerging an attractive paradigm for both academics and industry alike. Fog computing holds potential for new breeds of services and user experience. However, Fog computing is still nascent and requires strong groundwork to adopt as practically feasible, cost-effective, efficient and easily deployable alternate to currently ubiquitous cloud. Fog computing promises to introduce cloud-like services on local network while reducing the cost. In this paper, we present a novel resource efficient framework for distributed video summarization over a multi-region fog computing paradigm. The nodes of the Fog network is based on resource constrained device Raspberry Pi. Surveillance videos are distributed on different nodes and a summary is generated over the Fog network, which is periodically pushed to the cloud to reduce bandwidth consumption. Different realistic workload in the form of a surveillance videos are used to evaluate the proposed system. Experimental results suggest that even by using an extremely limited resource, single board computer, the proposed framework has very little overhead with good scalability over off-the-shelf costly cloud solutions, validating its effectiveness for IoT-assisted smart cities. (C) 2018 Elsevier Inc. All rights reserved.Nasir, M.; Muhammad, K.; Lloret, J.; Sangaiah, AK.; Sajjad, M. (2019). Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities. Journal of Parallel and Distributed Computing. 126:161-170. https://doi.org/10.1016/j.jpdc.2018.11.004S16117012

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    Information access tasks and evaluation for personal lifelogs

    Get PDF
    Emerging personal lifelog (PL) collections contain permanent digital records of information associated with individuals’ daily lives. This can include materials such as emails received and sent, web content and other documents with which they have interacted, photographs, videos and music experienced passively or created, logs of phone calls and text messages, and also personal and contextual data such as location (e.g. via GPS sensors), persons and objects present (e.g. via Bluetooth) and physiological state (e.g. via biometric sensors). PLs can be collected by individuals over very extended periods, potentially running to many years. Such archives have many potential applications including helping individuals recover partial forgotten information, sharing experiences with friends or family, telling the story of one’s life, clinical applications for the memory impaired, and fundamental psychological investigations of memory. The Centre for Digital Video Processing (CDVP) at Dublin City University is currently engaged in the collection and exploration of applications of large PLs. We are collecting rich archives of daily life including textual and visual materials, and contextual context data. An important part of this work is to consider how the effectiveness of our ideas can be measured in terms of metrics and experimental design. While these studies have considerable similarity with traditional evaluation activities in areas such as information retrieval and summarization, the characteristics of PLs mean that new challenges and questions emerge. We are currently exploring the issues through a series of pilot studies and questionnaires. Our initial results indicate that there are many research questions to be explored and that the relationships between personal memory, context and content for these tasks is complex and fascinating
    corecore