6,094 research outputs found

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    An Open-Source 7-Axis, Robotic Platform to Enable Dexterous Procedures within CT Scanners

    Full text link
    This paper describes the design, manufacture, and performance of a highly dexterous, low-profile, 7 Degree-of-Freedom (DOF) robotic arm for CT-guided percutaneous needle biopsy. Direct CT guidance allows physicians to localize tumours quickly; however, needle insertion is still performed by hand. This system is mounted to a fully active gantry superior to the patient's head and teleoperated by a radiologist. Unlike other similar robots, this robot's fully serial-link approach uses a unique combination of belt and cable drives for high-transparency and minimal-backlash, allowing for an expansive working area and numerous approach angles to targets all while maintaining a small in-bore cross-section of less than 16cm216cm^2. Simulations verified the system's expansive collision free work-space and ability to hit targets across the entire chest, as required for lung cancer biopsy. Targeting error is on average <1mm<1mm on a teleoperated accuracy task, illustrating the system's sufficient accuracy to perform biopsy procedures. The system is designed for lung biopsies due to the large working volume that is required for reaching peripheral lung lesions, though, with its large working volume and small in-bore cross-sectional area, the robotic system is effectively a general-purpose CT-compatible manipulation device for percutaneous procedures. Finally, with the considerable development time undertaken in designing a precise and flexible-use system and with the desire to reduce the burden of other researchers in developing algorithms for image-guided surgery, this system provides open-access, and to the best of our knowledge, is the first open-hardware image-guided biopsy robot of its kind.Comment: 8 pages, 9 figures, final submission to IROS 201
    • …
    corecore