755 research outputs found

    Evaluation of Using Semi-Autonomy Features in Mobile Robotic Telepresence Systems

    Get PDF
    Mobile robotic telepresence systems used for social interaction scenarios require that users steer robots in a remote environment. As a consequence, a heavy workload can be put on users if they are unfamiliar with using robotic telepresence units. One way to lessen this workload is to automate certain operations performed during a telepresence session in order to assist remote drivers in navigating the robot in new environments. Such operations include autonomous robot localization and navigation to certain points in the home and automatic docking of the robot to the charging station. In this paper we describe the implementation of such autonomous features along with user evaluation study. The evaluation scenario is focused on the first experience on using the system by novice users. Importantly, that the scenario taken in this study assumed that participants have as little as possible prior information about the system. Four different use-cases were identified from the user behaviour analysis.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Plan Nacional de Investigación, proyecto DPI2011-25483

    Human-Machine Interfaces for Service Robotics

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Towards a Methodology for Longitudinal Evaluation of Social Robotic Telepresence for Elderly

    Get PDF
    This paper describes a methodology for performing longitudinal evaluations when a social robotic telepresence system is deployed in realistic environments. This work is the core of an Ambient Assisted Living Project called ExCITE, Enabling Social Interaction Through Telepresence. The ExCITE project is geared towards an elderly audience and has as aim to increase social interaction among elderly, their family and healthcare services by using robotic telepresence. The robotic system used in the project is called the Giraff robot and over a three year period, prototypes of this platform are deployed at a number of test-sites in different European countries where user feedback is collected and feedback into the refinement of the prototype. In this paper, we discuss the methodology of ExCITE in particular relation to other methodologies for longitudinal evaluation. The paper also provides a discussion of the possible pitfalls and risks in performing longitudinal studies of this nature particularly as they relate to social robotic telepresence technologies

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    • …
    corecore