6,673 research outputs found

    Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    Get PDF
    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of different link layer reliability mechanisms on the performance of TCP Cubic transport layer protocol

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    On the Queueing Behavior of Random Codes over a Gilbert-Elliot Erasure Channel

    Full text link
    This paper considers the queueing performance of a system that transmits coded data over a time-varying erasure channel. In our model, the queue length and channel state together form a Markov chain that depends on the system parameters. This gives a framework that allows a rigorous analysis of the queue as a function of the code rate. Most prior work in this area either ignores block-length (e.g., fluid models) or assumes error-free communication using finite codes. This work enables one to determine when such assumptions provide good, or bad, approximations of true behavior. Moreover, it offers a new approach to optimize parameters and evaluate performance. This can be valuable for delay-sensitive systems that employ short block lengths.Comment: 5 pages, 4 figures, conferenc

    Quickest Sequence Phase Detection

    Full text link
    A phase detection sequence is a length-nn cyclic sequence, such that the location of any length-kk contiguous subsequence can be determined from a noisy observation of that subsequence. In this paper, we derive bounds on the minimal possible kk in the limit of nn\to\infty, and describe some sequence constructions. We further consider multiple phase detection sequences, where the location of any length-kk contiguous subsequence of each sequence can be determined simultaneously from a noisy mixture of those subsequences. We study the optimal trade-offs between the lengths of the sequences, and describe some sequence constructions. We compare these phase detection problems to their natural channel coding counterparts, and show a strict separation between the fundamental limits in the multiple sequence case. Both adversarial and probabilistic noise models are addressed.Comment: To appear in the IEEE Transactions on Information Theor

    Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    Get PDF
    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of different link layer reliability mechanisms on the performance of TCP Cubic transport layer protocol.Comment: 6 pages, 5 figures and 1 table. Submitted at PIMRC 201
    corecore