4,430 research outputs found

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges

    Life Prediction of Gas Turbine Materials

    Get PDF

    Cracking in asphalt materials

    Get PDF
    This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft

    M-integral analysis for cracks in a viscoplastic material with extended finite element method

    Get PDF
    The M-integral can be used to quantify complex damage in materials subjected to mechanical deformation. However, the effect of viscoplasticity on the damage level associated with the M-integral has not been studied yet. In this paper, the variation of the M-integral associated with viscoplastic deformation was investigated numerically using a user-defined material subroutine. Effects of creep deformation and loading rate on the M-integral were also evaluated. In particular, the association of crack growth with the evolution of the M-integral was captured by the extended finite element method for different crack configurations. It was found that viscoplastic deformation has a great effect on the damage evolution of viscoplastic materials characterized by the M-integral. Crack growth leads to an increase of the M-integral, indicating progressive damage of the materials. Concerning the secondary cracks formed around a major crack, the results show that the M-integral is highly dependent on the numbers and locations of those secondary cracks. Shielding effect is mostly evident for microcracks with centres located just behind or vertically in line with the major crack tip. With the increasing number of microcracks, the shielding effect tends to decrease as reflected by the increasing M-integral value

    Summary of Research 2000, Department of Mechanical Engineering

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or U.S. Government.This report contains project summaries of the research projects in the Department of Mechanical Engineering. A list of recent publications is also included, which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. Thesis abstracts of students advised by faculty in the Department are also included

    Remaining life assessment for boiler tubes affected by combined effect of wall thinning and overheating

    Get PDF
    Boilers, the most troublesome components of electric power, chemical and processing plants generate high costs in unscheduled shutdowns, repairs and power replacement. Every occurrence of ruptured tubes leads to emergency shutdown of the entire plant. This paper describes the joint international effort to develop faster and more efficient methods for condition assessment and remaining life prediction for boiler tubes made of low-carbon steel. Authors have undertaken a systematic research with the major objective to correlate the results of combined nondestructive testing (NDT) with condition assessment of boiler tubes. The evaluation included non-contact wall thickness measurement with EMAT technology plus internal oxide layer measurement with specialized ultrasonics. While the first method shows the remaining tube wall thickness, thus allowing calculating total stress, the latter one has the potential to characterize microstructure degradation, which up to now could only be determined by destructive analysis. The special attention was directed towards identification and analysis of creep damage due to overheating. In recent years, techniques were developed to identify heat damage by measuring the thickness of internal oxide scale because even a thin scale can seriously impede heat transfer causing elevation of temperature in tube wall. A combined effect of wall thinning and the “degree of overheating” on tube remaining life was investigated. The uniqueness of this work lies in one of the first attempts to develop and validate a tool for methodology for condition assessment and remaining life prediction, for Steel20 tube material, while most of previous authors had concentrated on Cr-Mo steels. Another contribution is the combined treatment of two different damage mechanisms and practical utilization of two various NDT techniques. To-date, both results are treated separately, and consequently separate reject criteria exist for overheating and separate for wall thinning. As a result of work presented in this paper, a procedure was recommended to calculate the tube remaining life based on the results of two ultrasonic tests

    Computational Methods for Failure Analysis and Life Prediction

    Get PDF
    This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered

    The application of the soft impression technique to evaluate flow stress, creep and frictional deformation of polycrystalline diamond and cubic boron nitride

    Get PDF
    Metal shaping processes are clear examples of engineering applications where a hard material is worn by a softer one - i.e. the tool and workpiece respectively. The soft impressor technique, introduced by Brookes and Green (1973), has proved valuable in measuring the relevant mechanical properties of tool materials - e.g. the measurement of the flow stress of diamond single crystals at temperatures up to 1500°C (Brookes, 1992). In this work, the technique has been extended further in order to form a basis for the comparison and evaluation of ultra-hard materials. Three main aspects of the performance of these tool materials have been covered: the effect of temperature on flow stress; cumulative deformation under point loading conditions; wear due to repeated traversals (fatigue).In the first part, the technique has been extended to determine the flow stress of polycrystalline diamond and cubic boron nitride as a function of temperature and a mathematical model has been proposed to estimate the flow stress in isotropic polycrystalline materials. This model was first analysed by Love (1928) and was used as the basis on which to identify the threshold pressure above which dislocation movement is initiated in diamond single crystals (Brookes et al (1990)). The applicability of this model for polycrystals was verified by correlating the yield strength of polycrystalline copper, measured in tension, with the determination of minimum contact mean pressure to plastically deform the same material. According to the model, the first evidence of plastic deformation should be observed at the contact periphery and this has been verified in this work. Consequently, using this approach, the effect of temperature on the flow stress of polycrystalline diamond (Syndax) and polycrystalline cubic boron nitride (Amborite) has been established and it is shown that there are three distinct regimes. In regime I, the deformation is brittle and fracture occurs above a given mean pressure; in regime II dislocations are mobile and the flow stress decreases sharply as the temperature rises; and in regime III the flow stress is independent of the temperature.# In the earlier work, the brittle - ductile transition temperature (BOT) has been identified as that temperature where regime I ends and II begins. Above the BDT, time dependent plastic flow has been observed, in all of these materials, leading to a measurable increase in the size of the impression. However, this particular type of cumulative deformation, described as impression creep, is shown to be different to conventional creep as measured under uniaxial stress conditions.Finally, the room temperature friction and deformation of various polycrystalline diamond based specimens, Le. aggregates with a binder phase of cobalt (Syndite) or silicon carbide (Syndax), a polycrystalline coating produced by a chemical vapour deposition processes (CVDite) and cubic boron nitride (Amborite) were studied when softer metallic and ceramic sliders were used. As a result of increasing the number of traversals, significant wear of the CVDite diamond coating by softer metallic sliders (aluminium and mild steel) was observed. This could be attributed to the high level of residual stresses in the diamond layer which is thought to be due to the difference in the thermal expansion coefficients of the coatings and their substrates. Burton et al (1995) reported a strain of 0.3% on the surface of the diamond coating and hence the tensile stress on the upper side of the coating will be equivalent to about 3.0 GPa. This value is comparable to the theoretical cleavage strength of diamond. It is suggested an additional tensile stress, due to the sliding friction, could have caused cleavage of individual diamond crystals. The resultant wear debris then becoming embedded in the metallic slider. These embedded diamond particles in the tip of the slider could be responsible for the increased friction and wear
    • …
    corecore