1,687 research outputs found

    Spatio-Temporal Modelling of Perfusion Cardiovascular MRI

    Get PDF
    Myocardial perfusion MRI provides valuable insight into how coronary artery and microvascular diseases affect myocardial tissue. Stenosis in a coronary vessel leads to reduced maximum blood flow (MBF), but collaterals may secure the blood supply of the myocardium but with altered tracer kinetics. To date, quantitative analysis of myocardial perfusion MRI has only been performed on a local level, largely ignoring the contextual information inherent in different myocardial segments. This paper proposes to quantify the spatial dependencies between the local kinetics via a Hierarchical Bayesian Model (HBM). In the proposed framework, all local systems are modelled simultaneously along with their dependencies, thus allowing more robust context-driven estimation of local kinetics. Detailed validation on both simulated and patient data is provided

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Adaptive Weighting in Radio Interferometric Imaging

    Full text link
    Radio interferometers observe the Fourier space of the sky, at locations determined by the array geometry. Before a real space image is constructed by a Fourier transform, the data is weighted to improve the quality of reconstruction. Two criteria for calculation of weights are maximizing sensitivity and minimizing point spread function (PSF) sidelobe levels. In this paper, we propose a novel weighting scheme suitable for ultra deep imaging experiments. The proposed weighting scheme is used to maximize sensitivity while minimizing PSF sidelobe variation across frequency and multiple epochs. We give simulation results that show the superiority of the proposed scheme compared with commonly used weighting schemes in achieving these objectives.Comment: MNRAS Accepted 2014 July 22. Received 2014 July 15; in original form 2014 June 2

    Parametric high resolution techniques for radio astronomical imaging

    Full text link
    The increased sensitivity of future radio telescopes will result in requirements for higher dynamic range within the image as well as better resolution and immunity to interference. In this paper we propose a new matrix formulation of the imaging equation in the cases of non co-planar arrays and polarimetric measurements. Then we improve our parametric imaging techniques in terms of resolution and estimation accuracy. This is done by enhancing both the MVDR parametric imaging, introducing alternative dirty images and by introducing better power estimates based on least squares, with positive semi-definite constraints. We also discuss the use of robust Capon beamforming and semi-definite programming for solving the self-calibration problem. Additionally we provide statistical analysis of the bias of the MVDR beamformer for the case of moving array, which serves as a first step in analyzing iterative approaches such as CLEAN and the techniques proposed in this paper. Finally we demonstrate a full deconvolution process based on the parametric imaging techniques and show its improved resolution and sensitivity compared to the CLEAN method.Comment: To appear in IEEE Journal of Selected Topics in Signal Processing, Special issue on Signal Processing for Astronomy and space research. 30 page

    A robust orthogonal adaptive approach to SISO deconvolution

    Get PDF
    This paper formulates in a common framework some results from the fields of robust filtering, function approximation with orthogonal basis, and adaptive filtering, and applies them for the design of a general deconvolution processor for SISO systems. The processor is designed to be robust to small parametric uncertainties in the system model, with a partially adaptive orthogonal structure. A simple gradient type of adaptive algorithm is applied to update the coefficients that linearly combine the fixed robust basis functions used to represent the deconvolver. The advantages of the design are inherited from the mentioned fields: low sensitivity to parameter uncertainty in the system model, good numerical and structural behaviour, and the capability of tracking changes in the systems dynamics. The linear equalization of a simple ADSL channel model is presented as an example including comparisons between the optimal nominal, adaptive FIR, and the proposed design.Facultad de IngenieríaComisión de Investigaciones Científicas de la provincia de Buenos Aire

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used

    Estimation of Fiber Orientations Using Neighborhood Information

    Full text link
    Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16 figure

    Computer Simulation Of A Complete Microwave Radiometer System

    Get PDF
    corecore