84 research outputs found

    Expert system management of cascaded hydro-electric schemes

    Get PDF

    Advanced technologies for offering situational intelligence in flood warning and response systems : a literature review

    Get PDF
    Deaths and property damage from floods have increased drastically in the past two 9 decades due to various reasons such as increased population, unplanned development and climate 10 change. Such losses from floods can be reduced by issuing timely early warnings and through 11 effective response mechanisms, based on situational intelligence during emerging flood situations. 12 This paper presents the outcome of a literature review that was conducted to identify the types and 13 sources of intelligence required for flood warning and response processes as well as the technology 14 solutions that can be used for offering such intelligence. Twenty-seven different types of intelligence 15 are presented, together with the technologies that can be used to extract such intelligence. 16 Furthermore, a conceptual architecture, that illustrates how relevant technology solutions can be 17 used to extract intelligence at various stages of a flood cycle for decision-making for issuing early 18 warnings and planning responses, is presented

    Spool scheduling and expert systems

    Get PDF

    A case-based reasoning approach to improve risk identification in construction projects

    Get PDF
    Risk management is an important process to enhance the understanding of the project so as to support decision making. Despite well established existing methods, the application of risk management in practice is frequently poor. The reasons for this are investigated as accuracy, complexity, time and cost involved and lack of knowledge sharing. Appropriate risk identification is fundamental for successful risk management. Well known risk identification methods require expert knowledge, hence risk identification depends on the involvement and the sophistication of experts. Subjective judgment and intuition usually from par1t of experts’ decision, and sharing and transferring this knowledge is restricted by the availability of experts. Further, psychological research has showed that people have limitations in coping with complex reasoning. In order to reduce subjectivity and enhance knowledge sharing, artificial intelligence techniques can be utilised. An intelligent system accumulates retrievable knowledge and reasoning in an impartial way so that a commonly acceptable solution can be achieved. Case-based reasoning enables learning from experience, which matches the manner that human experts catch and process information and knowledge in relation to project risks. A case-based risk identification model is developed to facilitate human experts making final decisions. This approach exploits the advantage of knowledge sharing, increasing confidence and efficiency in investment decisions, and enhancing communication among the project participants

    Data Analytics for Automated Near Real Time Detection of Blockages in Smart Wastewater Systems

    Get PDF
    Blockage events account for a substantial portion of the reported failures in the wastewater network, causing flooding, loss of service, environmental pollution and significant clean-up costs. Increasing telemetry in Combined Sewer Overflows (CSOs) provides the opportunity for near real-time data-driven modelling of the sewer network. The research work presented in this thesis describes the development and testing of a novel system, designed for the automatic detection of blockages and other unusual events in near real-time. The methodology utilises an Evolutionary Artificial Neural Network (EANN) model for short term CSO level predictions and Statistical Process Control (SPC) techniques to analyse unusual CSO level behaviour. The system is designed to mimic the work of a trained, experience human technician in determining if a blockage event has occurred. The detection system has been applied to real blockage events from a UK wastewater network. The results obtained illustrate that the methodology can identify different types of blockage events in a reliable and timely manner, and with a low number of false alarms. In addition, a model has been developed for the prediction of water levels in a CSO chamber and the generation of alerts for upcoming spill events. The model consists of a bi-model committee evolutionary artificial neural network (CEANN), composed of two EANN models optimised for wet and dry weather, respectively. The models are combined using a non-linear weighted averaging approach to overcome bias arising from imbalanced data. Both methodologies are designed to be generic and self-learning, thus they can be applied to any CSO location, without requiring input from a human operator. It is envisioned that the technology will allow utilities to respond proactively to developing blockages events, thus reducing potential harm to the sewer network and the surrounding environment
    • …
    corecore