199 research outputs found

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    TOWARDS INTEGRATION OF GRAPHENE IN ADVANCED CMOS INTERCONNECT TECHNOLOGY

    Get PDF
    The integration of graphene into existing state-of-the-art semiconductor manufacturing is a topic of worldwide interest. With its unprecedented electrical, thermal and mechanical properties, graphene is ideally suited for back-end of line (BEOL) technology to boost the performance of on-chip copper (Cu) interconnects. However, the lack of BEOL compatible methods has stymied the true evaluation of Cu/graphene hybrid (Cu-G) technology. The objectives of this thesis proposal are to demonstrate BEOL-compatible graphene growth techniques, and explore various avenues for practical integration of graphene in order to achieve better electrical, thermal and reliability metrics than traditional interconnect technology

    Carbon Nanotube Interconnect Modeling for Very Large Scale Integrated Circuits

    Get PDF
    In this research, we have studied and analyzed the physical and electrical properties of carbon nanotubes. Based on the reported models for current transport behavior in non-ballistic CNT-FETs, we have built a dynamic model for non-ballistic CNT-FETs. We have also extended the surface potential model of a non-ballistic CNT-FET to a ballistic CNT-FET and developed a current transport model for ballistic CNT-FETs. We have studied the current transport in metallic carbon nanotubes. By considering the electron-electron interactions, we have modified two-dimensional fluid model for electron transport to build a semi-classical one-dimensional fluid model to describe the electron transport in carbon nanotubes, which is regarded as one-dimensional system. Besides its accuracy compared with two-dimensional fluid model and Lüttinger liquid theory, one-dimensional fluid model is simple in mathematical modeling and easier to extend for electronic transport modeling of multi-walled carbon nanotubes and single-walled carbon nanotube bundles as interconnections. Based on our reported one-dimensional fluid model, we have calculated the parameters of the transmission line model for the interconnection wires made of single-walled carbon nanotube, multi-walled carbon nanotube and single-walled carbon nanotube bundle. The parameters calculated from these models show close agreements with experiments and other proposed models. We have also implemented these models to study carbon nanotube for on-chip wire inductors and it application in design of LC voltage-controlled oscillators. By using these CNT-FET models and CNT interconnects models, we have studied the behavior of CNT based integrated circuits, such as the inverter, ring oscillator, energy recovery logic; and faults in CNT based circuits

    Nanochips and medical applications

    Get PDF
    Ο όρος «νανοτσιπ» αναφέρεται σε ένα ολοκληρωμένο κύκλωμα (τσιπ) με νανοϋλικά και δομές στη νανοκλίμακα (1-100nm). Ένα ολοκληρωμένο κύκλωμα είναι μια συλλογή ηλεκτρονικών εξαρτημάτων, όπως τρανζίστορ, δίοδοι, πυκνωτές και αντιστάσεις. Τα σημερινά τρανζίστορ είναι στη νανοκλίμακα, αλλά μπορούν να τροποποιηθούν με νανοδομές για την κατασκευή βιοαισθητήρων που μπορούν να πραγματοποιούν ανίχνευση βιομορίων, όπως ιόντα, μόρια DNA, αντισώματα και αντιγόνα με μεγάλη ευαισθησία. Υλικά και Μέθοδοι: Πραγματοποιήθηκε συστηματική αναζήτηση βιβλιογραφίας με χρήση των ηλεκτρονικών βάσεων δεδομένων PubMed, Google Scholar και Scopus για την ανάπτυξη και χρήση νανοτσίπ σε ιατρικές εφαρμογές. Για τον προσδιορισμό των σχετικών εργασιών, τα κριτήρια συμπερίληψης αναφέρονται σε άρθρα στην αγγλική γλώσσα, άρθρα βιβλιογραφικού περιεχομένου ή/και έρευνών. Τα κριτήρια αποκλεισμού ήταν άρθρα εφημερίδων, περιλήψεις συνεδρίων και επιστολές. Αποτελέσματα: Τεχνικές in-vivo και in-vitro έχουν χρησιμοποιηθεί για την ανίχνευση μορίων DNA, ιόντων, αντισωμάτων, σημαντικών πρωτεϊνών και καρκινικών δεικτών, όχι μόνο από δείγματα αίματος αλλά και από ιδρώτα, σάλιο και άλλα βιολογικά υγρά. Διαγνωστική εφαρμογή των νανοτσίπ αποτελεί και η ανίχνευση πτητικών οργανικών ενώσεων μέσω τεστ εκπνεόμενης αναπνοής. Υπάρχουν και αρκετές θεραπευτικές εφαρμογές αυτών των συσκευών ημιαγωγών όπως τσιπ διασύνδεσης εγκεφάλου-υπολογιστή για παραλυτικές ή επιληπτικές καταστάσεις, κατασκευή «βιονικών» οργάνων όπως τεχνητός αμφιβληστροειδής, τεχνητό δέρμα και ρομποτικά προθετικά άκρα για ακρωτηριασμένους ή ρομποτική χειρουργική. Συμπέρασμα: Η χρήση των νανοτσίπ στην ιατρική είναι ένας αναδυόμενος τομέας με αρκετές θεραπευτικές εφαρμογές όπως η διάγνωση, η παρακολούθηση της υγείας και της φυσικής κατάστασης και η κατασκευή «βιονικών» οργάνων.Background: The term “nanochip” pertains to an integrated circuit (chip) with nanomaterials and components in the nano-dimension (1-100nm). An integrated circuit is essentially a collection of electronic components, like transistors, diodes, capacitors, and resistors. Current transistors are in the nanoscale but can also be modified with nanostructures like nanoribbons and nanowires to manufacture biosensors that can perform label-free, ultrasensitive detection of biomolecules like ions, DNA molecules, antibodies and antigens. Materials and Methods: A systematic literature search was conducted using the electronic databases PubMed, Google Scholar and Scopus for the development and use of nanochips in medical applications. For the identification of relevant papers, the inclusion criteria referred to articles in the English language, review and/or research articles. The exclusion criteria were newspaper articles, conference abstracts and letters. Results: In-vivo and In-vitro techniques have been used for detection of DNA molecules, ions, antibodies, important proteins, and tumor markers, not only from blood samples but also from sweat, saliva and other biological fluids. Another diagnostic application of nanochips is detection of volatile organic compounds via a breath test. There are also several therapeutic applications of these semiconductor devices like brain-computer interface chips for paralytic or epileptic conditions, manufacture of “bionic” organs like artificial retinas, artificial skin and robotic prostheses for amputees or robotic surgery. Conclusion: The use of nanochips in medicine is an emerging field with several therapeutic applications like diagnostics, health and fitness monitoring, and manufacture of “bionic” organs

    Impact of materials disorder on graphene heterostructure devices

    Get PDF
    This work is focused on characterizing the impact of material based disorder on the properties of graphene based vertical tunneling heterostructures. The motivation and challenges for replacing silicon for low power digital electronics has been presented. The status of the research on graphene based digital electronics is critically reviewed. Scalable methods for synthesizing large area two dimensional materials including graphene, molybdenum disulfide, and hexagonal boron nitride are integrated into a complex CMOS fabrication process to investigate the impact of disorder on the properties of vertical graphene based heterostructures for low power digital electronics. The CMOS fabrication process was found to introduce contaminants in the form of polymeric residues that reduced the lateral conduction of the graphene. Thermal decomposition of the residues resulted in the introduction of defects in the graphene. A chemical etching method utilizing a sacrificial titanium layer removed via HF etching effectively removed the contaminants without damaging the graphene. Dielectric tunneling barriers were deposited by atomic layer deposition (ALD). The composition of the tunneling barrier was experimentally shown to alter the electrical performance of the graphene heterostructure and allows barrier engineering for tailoring the electrical properties of the device. The thickness of the tunneling barrier was shown to control the dominant tunneling mechanism with barriers less than ~3 nm required for direct tunneling. The impact of the graphene on the electrical performance of the device was investigated by using graphene of various domain sizes. No dependence was found on the graphene domain size suggesting the tunneling barrier dielectric or device substrate is limiting the device performance. Following recent reports utilizing exfoliated materials, two dimensional materials (molybdenum disulfide and hexagonal boron nitride) complimentary to graphene were utilized as tunneling dielectrics to further improve the device performance over conventional dielectric materials. The direct synthesis of complimentary two dimensional materials on graphene was shown to introduce defects into the graphene structure and to suppress the electrical properties of the device. Trapping of electrons in the MoS2 defect states was shown to drastically suppress the tunneling current compared to less defective exfoliated materials. Decreasing the synthesis temperature of the MoS2 was shown as a potential pathway for reducing the induced defects in the graphene. A large area synthesized hexagonal boron nitride buffer layer was shown to improve the lateral conduction of the graphene. Contrary to reports of exfoliated materials, the introduction of a hexagonal boron nitride tunneling barrier was shown to reduce the mobility of the graphene due to increased scattering as a result of defects in the hexagonal boron nitride as well as contamination introduced during the transfer process. The lateral conductance of the graphene was shown to be improved in the graphene vertical heterostructure with a hexagonal boron nitride buffer layer, but was insufficient to improve the overall device performance. Improved synthesis methods to reduce the intrinsic defects in the as synthesized hexagonal boron nitride is necessary to further improve the graphene heterostructure performance.Ph.D

    New materials and advances in making electronic skin for interactive robots

    Get PDF
    Flexible electronics has huge potential to bring revolution in robotics and prosthetics as well as to bring about the next big evolution in electronics industry. In robotics and related applications, it is expected to revolutionise the way with which machines interact with humans, real-world objects and the environment. For example, the conformable electronic or tactile skin on robot’s body, enabled by advances in flexible electronics, will allow safe robotic interaction during physical contact of robot with various objects. Developing a conformable, bendable and stretchable electronic system requires distributing electronics over large non-planar surfaces and movable components. The current research focus in this direction is marked by the use of novel materials or by the smart engineering of the traditional materials to develop new sensors, electronics on substrates that can be wrapped around curved surfaces. Attempts are being made to achieve flexibility/stretchability in e-skin while retaining a reliable operation. This review provides insight into various materials that have been used in the development of flexible electronics primarily for e-skin applications

    Device and circuit-level models for carbon nanotube and graphene nanoribbon transistors

    Get PDF
    Metal-oxide semiconductor field-effect transistor (MOSFET) scaling throughout the years has enabled us to pack million of MOS transistors on a single chip to keep in pace with Moore’s Law. After forty years of advances in integrated circuit (IC) technology, the scaling of silicon (Si) MOSFET has entered the nanometer dimension with the introduction of 90 nm high volume manufacturing in 2004. The latest technological advancement has led to a low power, high-density and high-speed generation of processor. Nevertheless, the scaling of the Si MOSFET below 22 nm may soon meet its’ fundamental physical limitations. This threshold makes the possible use of novel devices and structures such as carbon nanotube field-effect transistors (CNTFETs) and graphene nanoribbon field-effect transistors (GNRFETs) for future nanoelectronics. The investigation explores the potential of these amazing carbon structures that exceed MOSFET capabilities in term of speed, scalability and power consumption. The research findings demonstrate the potential integration of carbon based technology into existing ICs. In particular, a simulation program with integrated circuit emphasis (SPICE) model for CNTFET and GNRFET in digital logic applications is presented. The device performance of these circuit models and their design layout are then compared to 45 nm and 90 nm MOSFET for benchmarking. It is revealed through the investigation that CNT and GNR channels can overcome the limitations imposed by Si channel length scaling and associated short channel effects while consuming smaller channel area at higher current density
    corecore