42,958 research outputs found

    Modular Web Queries — From Rules to Stores

    Get PDF
    Even with all the progress in Semantic technology, accessing Web data remains a challenging issue with new Web query languages and approaches appearing regularly. Yet most of these languages, including W3C approaches such as XQuery and SPARQL, do little to cope with the explosion of the data size and schemata diversity and richness on the Web. In this paper we propose a straightforward step toward the improvement of this situation that is simple to realize and yet effective: Advanced module systems that make partitioning of (a) the evaluation and (b) the conceptual design of complex Web queries possible. They provide the query programmer with a powerful, but easy to use high-level abstraction for packaging, encapsulating, and reusing conceptually related parts (in our case, rules) of a Web query. The proposed module system combines ease of use thanks to a simple core concept, the partitioning of rules and their consequences in flexible “stores”, with ease of deployment thanks to a reduction semantics. We focus on extending the rule-based Semantic Web query language Xcerpt with such a module system though the same approach can be applied to other (rule-based) languages as well

    Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge Base

    Get PDF
    Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on users’ needs regarding music collection management which can strongly alternate between single human beings. The author’s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, • a new vocabulary for describing the play back domain, • another one for representing information service categorisations and quality ratings, and • one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.:1 Introduction and Background 11 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Personal Music Collection Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Music Information Management 17 2.1 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.1 Knowledge Representation Models . . . . . . . . . . . . . . . . . 18 2.1.1.2 Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Knowledge Management Systems . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.1 Information Services . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.2 Ontology-based Distributed Knowledge Management Systems . . 20 2.1.2.3 Knowledge Management System Design Guideline . . . . . . . . 21 2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 The Evolution of the World Wide Web . . . . . . . . . . . . . . . . . . . . . 22 Personal Music Knowledge Base Contents 2.2.1.1 The Hypertext Web . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.2 The Normative Principles of Web Architecture . . . . . . . . . . . 23 2.2.1.3 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Common Semantic Web Knowledge Representation Languages . . . . . . 25 2.2.3 Resource Description Levels and their Relations . . . . . . . . . . . . . . . 26 2.2.4 Semantic Web Knowledge Representation Models . . . . . . . . . . . . . . 29 2.2.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.3 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4.4 Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4.5 Providing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.4.6 Consuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Music Content and Context Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Categories of Musical Characteristics . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Music Metadata Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3 Music Metadata Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.3.1 Audio Signal Carrier Indexing Services . . . . . . . . . . . . . . . . 41 2.3.3.2 Music Recommendation and Discovery Services . . . . . . . . . . 42 2.3.3.3 Music Content and Context Analysis Services . . . . . . . . . . . 43 2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Personalisation and Environmental Context . . . . . . . . . . . . . . . . . . . . . . 44 2.4.1 User Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.2 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.3 Stereotype Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 The Personal Music Knowledge Base 48 3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 User Account Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Individual Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Information Service Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Proactive Update Notification . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.5 Information Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.6 Personal Associations and Context . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 A Personal Music Knowledge Base 57 4.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 The Info Service Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.2 The Play Back Ontology and related Ontologies . . . . . . . . . . . . . . . . 61 4.1.2.1 The Ordered List Ontology . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2.2 The Counter Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2.3 The Association Ontology . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2.4 The Play Back Ontology . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.3 The Recommendation Ontology . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.4 The Cognitive Characteristics Ontology and related Vocabularies . . . . . . 72 4.1.4.1 The Weighting Ontology . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.4.2 The Cognitive Characteristics Ontology . . . . . . . . . . . . . . . 73 4.1.4.3 The Property Reification Vocabulary . . . . . . . . . . . . . . . . . 78 4.1.5 The Media Types Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Knowledge Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Personal Music Knowledge Base in Practice 87 5.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.1 AudioScrobbler RDF Service . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.2 PMKB ID3 Tag Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Reutilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.3 Reviews and Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Conclusion and Future Work 93 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    A Semantic Web Annotation Tool for a Web-Based Audio Sequencer

    Get PDF
    Music and sound have a rich semantic structure which is so clear to the composer and the listener, but that remains mostly hidden to computing machinery. Nevertheless, in recent years, the introduction of software tools for music production have enabled new opportunities for migrating this knowledge from humans to machines. A new generation of these tools may exploit sound samples and semantic information coupling for the creation not only of a musical, but also of a "semantic" composition. In this paper we describe an ontology driven content annotation framework for a web-based audio editing tool. In a supervised approach, during the editing process, the graphical web interface allows the user to annotate any part of the composition with concepts from publicly available ontologies. As a test case, we developed a collaborative web-based audio sequencer that provides users with the functionality to remix the audio samples from the Freesound website and subsequently annotate them. The annotation tool can load any ontology and thus gives users the opportunity to augment the work with annotations on the structure of the composition, the musical materials, and the creator's reasoning and intentions. We believe this approach will provide several novel ways to make not only the final audio product, but also the creative process, first class citizens of the Semantic We

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation

    The Semantic Web MIDI Tape: An Interface for Interlinking MIDI and Context Metadata

    Get PDF
    The Linked Data paradigm has been used to publish a large number of musical datasets and ontologies on the Semantic Web, such as MusicBrainz, AcousticBrainz, and the Music Ontology. Recently, the MIDI Linked Data Cloud has been added to these datasets, representing more than 300,000 pieces in MIDI format as Linked Data, opening up the possibility for linking fine-grained symbolic music representations to existing music metadata databases. Despite the dataset making MIDI resources available in Web data standard formats such as RDF and SPARQL, the important issue of finding meaningful links between these MIDI resources and relevant contextual metadata in other datasets remains. A fundamental barrier for the provision and generation of such links is the difficulty that users have at adding new MIDI performance data and metadata to the platform. In this paper, we propose the Semantic Web MIDI Tape, a set of tools and associated interface for interacting with the MIDI Linked Data Cloud by enabling users to record, enrich, and retrieve MIDI performance data and related metadata in native Web data standards. The goal of such interactions is to find meaningful links between published MIDI resources and their relevant contextual metadata. We evaluate the Semantic Web MIDI Tape in various use cases involving user-contributed content, MIDI similarity querying, and entity recognition methods, and discuss their potential for finding links between MIDI resources and metadata

    Context-aware, ontology-based, service discovery

    Get PDF
    Service discovery is a process of locating, or discovering, one or more documents, that describe a particular service. Most of the current service discovery approaches perform syntactic matching, that is, they retrieve services descriptions that contain particular keywords from the user’s query. This often leads to poor discovery results, because the keywords in the query can be semantically similar but syntactically different, or syntactically similar but semantically different from the terms in a service description. Another drawback of the existing service discovery mechanisms is that the query-service matching score is calculated taking into account only the keywords from the user’s query and the terms in the service descriptions. Thus, regardless of the context of the service user and the context of the services providers, the same list of results is returned in response to a particular query. This paper presents a novel approach for service discovery that uses ontologies to capture the semantics of the user’s query, of the services and of the contextual information that is considered relevant in the matching process

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning

    Handling Data-Based Concurrency in Context-Aware Service Protocols

    Get PDF
    Dependency analysis is a technique to identify and determine data dependencies between service protocols. Protocols evolving concurrently in the service composition need to impose an order in their execution if there exist data dependencies. In this work, we describe a model to formalise context-aware service protocols. We also present a composition language to handle dynamically the concurrent execution of protocols. This language addresses data dependency issues among several protocols concurrently executed on the same user device, using mechanisms based on data semantic matching. Our approach aims at assisting the user in establishing priorities between these dependencies, avoiding the occurrence of deadlock situations. Nevertheless, this process is error-prone, since it requires human intervention. Therefore, we also propose verification techniques to automatically detect possible inconsistencies specified by the user while building the data dependency set. Our approach is supported by a prototype tool we have implemented.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Exploring manuscripts: sharing ancient wisdoms across the semantic web

    Get PDF
    Recent work in digital humanities has seen researchers in-creasingly producing online editions of texts and manuscripts, particularly in adoption of the TEI XML format for online publishing. The benefits of semantic web techniques are un-derexplored in such research, however, with a lack of sharing and communication of research information. The Sharing Ancient Wisdoms (SAWS) project applies linked data prac-tices to enhance and expand on what is possible with these digital text editions. Focussing on Greek and Arabic col-lections of ancient wise sayings, which are often related to each other, we use RDF to annotate and extract seman-tic information from the TEI documents as RDF triples. This allows researchers to explore the conceptual networks that arise from these interconnected sayings. The SAWS project advocates a semantic-web-based methodology, en-hancing rather than replacing current workflow processes, for digital humanities researchers to share their findings and collectively benefit from each other’s work
    corecore