89 research outputs found

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Performance evaluation of wireless IEEE 802.11(b) used for ad-hoc networks in an e-learning classroom network

    Get PDF
    Evaluation of wireless networks for performance evaluation is a popular research area and a wealth of literature exists in this area. Wireless networks in infrastructure mode as well as Ad-hoc networks such as MANETs are considered extensively. Simulation results are provided for E-learning scenarios for cases where wireless networks in infrastructure mode are employed, however the possibilities of using ad- hoc networks and performance evaluation of e-learning scenarios with ad hoc networks are not considered. This paper presents an evaluation of the performances for wireless Ad-hoc networks employed in typical e-learning environment by using the OPNET modeller. Numerical simulation results, discussions and comparisons are provided. The results can be of great help for optimisation studies in typical e-learning environments. The performance issues are considered together with scalability concerns

    Investigating TCP performance in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) have become increasingly important in view of their promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such networks, consisting of potentially highly mobile nodes, have provided new challenges by introducing special consideration stemming from the unique characteristics of the wireless medium and the dynamic nature of the network topology. The TCP protocol, which has been widely deployed on a multitude of internetworks including the Internet, is naturally viewed as the de facto reliable transport protocol for use in MANETs. However, assumptions made at TCP’s inception reflected characteristics of the prevalent wired infrastructure of networks at the time and could subsequently lead to sub-optimal performance when used in wireless ad hoc environments. The basic presupposition underlying TCP congestion control is that packet losses are predominantly an indication of congestion in the network. The detrimental effect of such an assumption on TCP’s performance in MANET environments has been a long-standing research problem. Hence, previous work has focused on addressing the ambiguity behind the cause of packet loss as perceived by TCP by proposing changes at various levels across the network protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the routing protocol at the network layer. The main challenge addressed by the current work is to propose new methods to ameliorate the illness-effects of TCP’s misinterpretation of the causes of packet loss in MANETs. An assumed restriction on any proposed modifications is that resulting performance increases should be achievable by introducing limited changes confined to the transport layer. Such a restriction aids incremental adoption and ease of deployment by requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As such, a proposed solution may involve implementation at the sender, the receiver or both to address TCP shortcomings. Some attempts at describing TCP behaviour in MANETs have been previously reported in the literature. However, a thorough enquiry into the performance of those TCP agents popular in terms of research and adoption has been lacking. Specifically, very little work has been performed on an exhaustive analysis of TCP variants across different MANET routing protocols and under various mobility conditions. The first part of the dissertation addresses this shortcoming through extensive simulation evaluation in order to ascertain the relative performance merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful examination reveals sub-par performance of TCP Reno, the largely equivalent performance of NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly stated and justified for the first time in a dynamic MANET environment. Examination of the literature reveals that in addition to losses caused by route breakages, the hidden terminal effect contributes significantly to non-congestion induced packet losses in MANETs, which in turn has noticeably negative impact on TCP goodput. By adapting the conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents, like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based congestion avoidance mechanism which increases TCP goodput considerably across long paths by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity of non-congestion related packet loss in MANETs. The proposed changes maintain intact the end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is further contrasted with an existing transport layer-focused solution and is shown to perform significantly better in a range of dynamic scenarios. As solution from an end-to-end perspective may be applicable to either or both communicating ends, the idea of implementing receiver-side alterations is also explored. Previous work has been primarily concerned with reducing receiver-generated cumulative ACK responses by “bundling” them into as few packets as possible thereby reducing misinterpretations of packet loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions reveals limitations in common evaluation practices and the solutions themselves. In an effort to address this shortcoming, the third part of this research work first specifies a tighter problem domain, identifying the circumstances under which the problem may be tackled by an end-to-end solution. Subsequent original analysis reveals that by taking into account optimisations possible in wireless communications, namely the partial or complete omission of the RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over long paths. This novel modification is activated in a variety of topologies and is assessed using new metrics to more accurately gauge its effectiveness in a wireless multihop environment

    Evaluation of MANET Routing Protocols in Realistic Environments

    Get PDF
    Projecte final de carrera realitzat en col.laboraciĂł amb College of Electronics and Information Engineering. Tongji UniversityRecently, many researchers have become interested in MANET (Mobile Ad-hoc NET- works) to construct a self-con gurable network without existing communication infras- tructure. This research presents the results of a detailed performance evaluation on several MANET routing protocols working under realistic environments. The routing protocols, mobility models and other aspects are explained and discussed in order to know how to use them properly to model real-life conditions. NS-2 and Bonnmotion were used to create the networks, services and environment characteristics in general. It is concluded which protocols can handle which applications and which not and that the performance of the protocols can be considerably di erent when more and more realistic elements are taken into account. This should be considered in further researches since the nowadays evolution of MANET will bring them soon into services of our society

    Mobility-based Routing Overhead Management in Reconfigurable Wireless Ad hoc Networks

    Get PDF
    Mobility-Based Routing Overhead Management in Reconfigurable Wireless Ad Hoc Networks Routing Overheads are the non-data message packets whose roles are establishment and maintenance of routes for data packets as well as neighbourhood discovery and maintenance. They have to be broadcasted in the network either through flooding or other techniques that can ensure that a path exists before data packets can be sent to various destinations. They can be sent reactively or periodically to neighbours so as to keep nodes updated on their neighbourhoods. While we cannot do without these overhead packets, they occupy much of the limited wireless bandwidth available in wireless networks. In a reconfigurable wireless ad hoc network scenario, these packets have more negative effects, as links need to be confirmed more frequently than in traditional networks mainly because of the unpredictable behaviour of the ad hoc networks. We therefore need suitable algorithms that will manage these overheads so as to allow data packet to have more access to the wireless medium, save node energy for longer life of the network, increased efficiency, and scalability. Various protocols have been suggested in the research area. They mostly address routing overheads for suitability of particular protocols leading to lack of standardisation and inapplicability to other protocol classes. In this dissertation ways of ensuring that the routing overheads are kept low are investigated. The issue is addressed both at node and network levels with a common goal of improving efficiency and performance of ad hoc networks without dedicating ourselves to a particular class of routing protocol. At node level, a method hereby referred to as "link availability forecast", that minimises routing overheads used for maintenance of neighbourhood, is derived. The targeted packets are packets that are broadcasted periodically (e.g. hello messages). The basic idea in this method is collection of mobility parameters from the neighbours and predictions or forecasts of these parameters in future. Using these parameters in simple calculations helps in identifying link availabilities between nodes participating in maintenance of networks backbone. At the network level, various approaches have been suggested. The first approach is the cone flooding method that broadcasts route request messages through a predetermined cone shaped region. This region is determined through computation using last known mobility parameters of the destination. Another approach is what is hereby referred as "destination search reverse zone method". In this method, a node will keep routes to destinations for a long time and use these routes for tracing the destination. The destination will then initiate route search in a reverse manner, whereby the source selects the best route for next delivery. A modification to this method is for the source node to determine the zone of route search and define the boundaries within which the packet should be broadcasted. The later method has been used for simulation purposes. The protocol used for verification of the improvements offered by the schemes was the AODV. The link availability forecast scheme was implemented on the AODV and labelled AODV_LA while the network level implementation was labelled AODV_RO. A combination of the two schemes was labelled AODV_LARO

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Bandwidth and Energy-Efficient Route Discovery for Noisy Mobile Ad-Hoc Networks

    Get PDF
    Broadcasting is used in on-demand routing protocols to discover routes in Mobile Ad-hoc Networks (MANETs). On-demand routing protocols, such as Ad-hoc On-demand Distance Vector (AODV) commonly employ pure flooding based broadcasting to discover new routes. In pure flooding, a route request (RREQ) packet is broadcast by the source node and each receiving node rebroadcasts it. This continues until the RREQ packet arrives at the destination node. Pure flooding generates excessive redundant routing traffic that may lead to the broadcast storm problem (BSP) and deteriorate the performance of MANETs significantly. A number of probabilistic broadcasting schemes have been proposed in the literature to address BSP. However, these schemes do not consider thermal noise and interference which exist in real life MANETs, and therefore, do not perform well in real life MANETs. Real life MANETs are noisy and the communication is not error free. This research argues that a broadcast scheme that considers the effects of thermal noise, co-channel interference, and node density in the neighbourhood simultaneously can reduce the broadcast storm problem and enhance the MANET performance. To achieve this, three investigations have been carried out: First, the effect of carrier sensing ranges on on-demand routing protocol such as AODV and their impact on interference; second, effects of thermal noise on on-demand routing protocols and third, evaluation of pure flooding and probabilistic broadcasting schemes under noisy and noiseless conditions. The findings of these investigations are exploited to propose a Channel Adaptive Probabilistic Broadcast (CAPB) scheme to disseminate RREQ packets efficiently. The proposed CAPB scheme determines the probability of rebroadcasting RREQ packets on the fly according to the current Signal to Interference plus Noise Ratio (SINR) and node density in the neighbourhood. The proposed scheme and two related state of the art (SoA) schemes from the literature are implemented in the standard AODV to replace the pure flooding based broadcast scheme. Ns-2 simulation results show that the proposed CAPB scheme outperforms the other schemes in terms of routing overhead, average end-to-end delay, throughput and energy consumption
    • …
    corecore