37,765 research outputs found

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final Report. Volume III: Silicon sheet: wafers and ribbons

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The primary objective of the Silicon Sheet Task of the FSA Project was the development of one or more low-cost technologies for producing silicon sheet suitable for processing into cost-eompetitive solar cells. Silicon sheet refers to high-purity crystalline silicon of size and thickness for fabrication into solar cells. The Task effort began with state-of-the-art sheet technologies and then solicited and supported any new silicon sheet alternatives that had the potential to achieve the Project goals. A total of 48 contracts were awarded that covered work in the areas of ingot growth and casting, wafering, ribbon growth, other sheet technologies, and programs of supportive research. Periodic reviews of each sheet technology were held, assessing the technical progress and the long-range potential. Technologies that failed to achieve their promise, or seemed to have lower probabilities for success in comparison with others, were dropped. A series of workshops was initiated to assess the state of the art, to provide insights into problems remaining to be addressed, and to support technology transfer. The Task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high-quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the Task cost goals were not achieved. This FSA Final Report (JPL Publication 86-31, 5101-289, DOE/JPL 1012-125, October 1986) is composed of eight volumes, consisting of an Executive Summary and seven technology reports: Volume I: Executive Summary. Volume II: Silicon Material. Volume III: Silicon Sheet: Wafers and Ribbons Volume IV: High-Efficiency Solar Celis. Volume V: Process Development. Volume VI: Engineering Sciences and Reliability. Volume VII: Module Encapsulation. Volume VIII: Project Analysis and Integration. Two supplemental reports included in the final report package are: FSA Project: 10 Years of Progress, JPL Document 400-279. 5101-279, October 1985. Summary of FSA Project Documentation: Abstracts of Published Documents, 1975 to 1986, JPL Publication 82-79 (Revision 1),5101-221, DOE/JPL-1 012-76, September 1986

    A New Microtensile Tester for the Study of MEMS Materials with the Aid of Atomic Force Microscopy

    Get PDF
    An apparatus has been designed and implemented to measure the elastic tensile properties (Young's modulus and tensile strength) of surface micromachined polysilicon specimens. The tensile specimens are "dog-bone" shaped ending in a large "paddle" for convenient electrostatic or, in the improved apparatus, ultraviolet (UV) light curable adhesive gripping deposited with electrostatically controlled manipulation. The typical test section of the specimens is 400 µm long with 2 µm x 50 µm cross section. The new device supports a nanomechanics method developed in our laboratory to acquire surface topologies of deforming specimens by means of Atomic Force Microscopy (AFM) to determine (fields of) strains via Digital Image Correlation (DIC). With this tool, high strength or non-linearly behaving materials can be tested under different environmental conditions by measuring the strains directly on the surface of the film with nanometer resolution

    Mechanical Stability in Crystalline Silicon Solar Cells

    Get PDF
    Mechanical stability of back contact solar cells deteriorates when holes (MWT, EWT) or grooves (TWT) are created in the wafer. These operations are essential for these structures so we found necessary to quantify the magnitude of this damage. A set of wafers with the EWT structure was produced and its mechanical strength measured by the Ring on Ring bending test. Other two sets of wafers with similar processes were prepared and tested to compare the effect of different fabrication steps on mechanical strength of the wafer. A numeric model was developed to analyse the data from the Ring on Ring test and a statistical study was carried out

    Improved consolidation of silicon carbide

    Get PDF
    Alpha silicon carbide powder was consolidated by both dry and wet methods. Dry pressing in a double acting steel die yielded sintered test bars with an average flexural strength of 235.6 MPa with a critical flaw size of approximately 100 micro m. An aqueous slurry pressing technique produced sintered test bars with an average flexural strength of 440.8 MPa with a critical flaw size of approximately 25 micro m. Image analysis revealed a reduction in both pore area and pore size distribution in the slurry pressed sintered test bars. The improvements in the slurry pressed material properties are discussed in terms of reduced agglomeration and improved particle packing during consolidation

    Investigation of organic adhesives for hybrid microcircuits

    Get PDF
    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed

    The study on the integration of Activity Based Costing (ABC) system and six-sigma principle

    Get PDF
    Manufacturing organizations are facing much more challenges as compared to the earlier years. The important and crucial decisions have to be taken by the management in continuous basis in order to ensure the survival and competitiveness of company throughout the journey to become a successful organization. In order to make these decisions fast and correct, they need more accurate information related to financial and non-financial aspects. The conventional cost management systems, which were developed decades ago are unable to provide all information required to make right decision, justify the cost reduction and process improvements (Chen, 1996). This is because they were based on labor-intensive production system while today’s production processes are more sophisticated and faces constant changes. An alternative costing system, Activity Based Costing (ABC) has emerged to the new solution to costing system. It provides financial and non-financial information not only for product costing but also for each activity of manufacturing process. It can list and measure the cost of each activity individually in production and in supporting activities to deliver of a product or service right to customers (Sohal & Chung, 1998). ABC focuses on the activities performed to produce the products throughout the manufacturing process (Gunasekaran et al., 1999). By assigning other costs, such as marketing and administrative to cost object, ABC able to provide more accurate product costs. It helps to improve the operational performance by allocating overhead costs correctly. It provides cost information based on the actual consumption of the resources by each particular activity. The goal of ABC is to reveal cost allocation information by tracing the production costs accurately to activities and product (Gunasekaran et al., 1999). The implementation of ABC has provided many benefits, such as more accurate product costing, providing of cost behavior information and tracing resources consumptions. Realizing many benefits gain from implementation of ABC, many companies have embarked in applying ABC system. However, there are many problems and barriers they encountered during the implementation, which made some has decided to abort this system and not be able to exploit its advantages. It is the objective of this study to help foster the growth of Malaysian companies by helping them to provide better understanding,knowledge and skills to take advantage of using ABC as a tool to improve their manufacturing process. The title of the project is The Study on Integration of Activity-based Costing and Six-sigma Principle. The specific objective of the study is to determine success factors for ABC implementation in manufacturing companies based on Six-sigma process improvement principle. The focus of the study is to identify and understand the critical success factors in implementation of ABC, to identify and specified the problems and barriers and to understand their relationship with the ABC success. In order to identify, understand and formulate the proposed solution, this study will use a survey approach to get required data for further analysis. The survey will be based on mailed questionnaires to selected manufacturing industries in Malaysia. In order to formulate a comprehensive and relevant set of questionnaires, a comprehensive review of literature will be studied, followed by validation and verification process,which involved expert opinions and a pilot study. The next phase is where data from the study will be analyzed to identify areas related to the level of acceptance of ABC,the critical success factors and also to determine the relationship between the organization’s factors and the success of implementation of ABC system. The tangible outcome of this project is to provide a set of proposed guidelines and support tools for manufacturing organizations in applying Activity-based Costing for process improvement efforts as suggested by Six-sigma improvement principle

    Kaedah pembelajaran lukisan kejuruteraan berasaskan simulasi

    Get PDF
    Kajian yang dijalankan ini adalah untuk melihat kebolehgunaan sebuah perisian pendidikan yang menerapkan Kaedah Pembelajaran Lukisan Kejuruteraan Berasaskan Simulasi bagi menyelesaikan masalah kurang faham , kurang minat dan kebergantungan yang terlalu memusat kepada guru di kalangan pelajar Tingkatan 4, Sekolah Menengah Ungku Aziz, Sabak Bernam, Selangor . Justeru, penyampaian isi kandungan yang bersesuaian dengan tahap pemikiran atau kognitif pelajar, aspek minat dan motivasi serta pembelajaran ala akses kendiri dirasakan sebagai faktor utama yang ingin dikenal pasti dalam perisian yang dibangunkan bagi menyelesaikan masalah tersebut. Macromedia Authorware versi 6.5 dipilih sebagai bahasa pengarangan bagi membangunkan perisian pendidikan ini. Seramai 30 responden dipilih untuk mendapatkan maklum balas terhadap kajian ini. Data yang didapati telah dianalisis menggunakan perisian Statistical Package for Social Science (SPSS) versi 11.0 menggunakan kaedah deskriptif min. Hasil kajian mendapati bahawa maklum balas adalah positif terhadap faktor-faktor yang telah dikaji

    Research pressure instrumentation for NASA space shuttle main engine

    Get PDF
    The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology

    Progress in materials and structures at Lewis Research Center

    Get PDF
    The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed

    Improved silicon nitride for advanced heat engines

    Get PDF
    The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors
    • …
    corecore