4,022 research outputs found

    Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing

    Get PDF
    This paper presents a new multi-function based modeling of 3D heterogeneous porous wound scaffolds to improve wound healing process for complex deep acute or chronic wounds. An imaging-based approach is developed to extract 3D wound geometry and recognize wound features. Linear healing fashion of the wound margin towards the wound center is mimicked. Blending process is thus applied to the extracted geometry to partition the scaffold into a number of uniformly gradient healing regions. Computer models of 3D engineered porous wound scaffolds are then developed for solid freeform modeling and fabrication. Spatial variation over biomaterial and loaded bio-molecule concentration is developed based on wound healing requirements. Release of bio-molecules over the uniform healing regions is controlled by varying their amount and entrapping biomaterial concentration. Thus, localized controlled release is developed to improve wound healing. A prototype multi-syringe single nozzle deposition system is used to fabricate a sample scaffold. Proposed methodology is implemented and illustrative examples are presented in this paper

    Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: field cancerization or contaminating tumor cells?

    Get PDF
    Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1-3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor-normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25-200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue

    Artificial Intelligence-Powered Chronic Wound Management System: Towards Human Digital Twins

    Get PDF
    Artificial Intelligence (AI) has witnessed increased application and widespread adoption over the past decade. AI applications to medical images have the potential to assist caregivers in deciding on a proper chronic wound treatment plan by helping them to understand wound and tissue classification and border segmentation, as well as visual image synthesis. This dissertation explores chronic wound management using AI methods, such as Generative Adversarial Networks (GAN) and Explainable AI (XAI) techniques. The wound images are collected, grouped, and processed. One primary objective of this research is to develop a series of AI models, not only to present the potential of AI in wound management but also to develop the building blocks of human digital twins. First of all, motivations, contributions, and the dissertation outline are summarized to introduce the aim and scope of the dissertation. The first contribution of this study is to build a chronic wound classification and its explanation utilizing XAI. This model also benefits from a transfer learning methodology to improve performance. Then a novel model is developed that achieves wound border segmentation and tissue classification tasks simultaneously. A Deep Learning (DL) architecture, i.e., the GAN, is proposed to realize these tasks. Another novel model is developed for creating lifelike wounds. The output of the previously proposed model is used as an input for this model, which generates new chronic wound images. Any tissue distribution could be converted to lifelike wounds, preserving the shape of the original wound. The aforementioned research is extended to build a digital twin for chronic wound management. Chronic wounds, enabling technologies for wound care digital twins, are examined, and a general framework for chronic wound management using the digital twin concept is investigated. The last contribution of this dissertation includes a chronic wound healing prediction model using DL techniques. It utilizes the previously developed AI models to build a chronic wound management framework using the digital twin concept. Lastly, the overall conclusions are drawn. Future challenges and further developments in chronic wound management are discussed by utilizing emerging technologies

    Aqueous Humor Outflow Structure and Function Imaging At the Bench and Bedside: A Review.

    Get PDF
    Anterior segment glaucoma clinical care and research has recently gained new focus because of novel imaging modalities and the advent of angle-based surgical treatments. Traditional investigation drawn to the trabecular meshwork now emphasizes the entire conventional aqueous humor outflow (AHO) pathway from the anterior chamber to the episcleral vein. AHO investigation can be divided into structural and functional assessments using different methods. The historical basis for studying the anterior segment of the eye and AHO in glaucoma is discussed. Structural studies of AHO are reviewed and include traditional pathological approaches to modern tools such as multi-model two-photon microscopy and optical coherence tomography. Functional assessment focuses on visualizing AHO itself through a variety of non-real-time and real-time techniques such as aqueous angiography. Implications of distal outflow resistance and segmental AHO are discussed with an emphasis on melding bench-side research to viable clinical applications. Through the development of an improved structure: function relationship for AHO in the anterior segment of the normal and diseased eye, a better understanding of the eye with improved therapeutics may be developed

    Collagen bundle morphometry in skin & scar tissue: a novel distance mapping method provides superior measurements compared to Fourier analysis

    Get PDF
    Histopathological evaluations of fibrotic processes require the characterization of collagen morphology in terms of geometrical features such as bundle orientation thickness and spacing. However, there are currently no reliable and valid techniques of measuring bundle thickness and spacing. Hence, two objective methods quantifying the collagen bundle thickness and spacing were tested for their reliability and validity: Fourier first-order maximum analysis and Distance Mapping, with the latter constituting a newly developed morphometric technique. Histological slides were constructed and imaged from 50 scar and 50 healthy human skin biopsies and subsequently analyzed by two observers to determine the interobserver reliability via the intraclass correlation coefficient. An intraclass correlation coefficient larger than 0.7 is considered as representing good reliability. The interobserver reliability for the Fourier first-order maximum and for the Distance Mapping algorithms, respectively, showed an intraclass correlation coefficient above 0.72 and 0.89. Additionally, we performed an assessment of validity in the form of responsiveness, in particular, demonstrating medium to excellent results via a calculation of the effect size, highlighting that both methods are sensitive enough to measure a treatment effect in clinical practice. In summary, two reliable and valid measurement methods were demonstrated for collagen bundle morphometry for the first time. Due to its superior reliability and more useful measures (bundle thickness and bundle spacing), Distance Mapping emerges as the preferred and more practical method. Nevertheless, in the future, both methods can be used for reliable and valid collagen morphometry of skin and scars, whereas further applications evaluating the quantitative microscopy of other fibrotic processes are anticipated

    Digital three-dimensional visualization of intrabony periodontal defects for regenerative surgical treatment planning

    Get PDF
    BACKGROUND: In the regenerative treatment of intrabony periodontal defects, surgical strategies are primarily determined by defect morphologies. In certain cases, however, direct clinical measurements and intraoral radiographs do not provide sufficient information on defect morphologies. Therefore, the application of cone-beam computed tomography (CBCT) has been proposed in specific cases. 3D virtual models reconstructed with automatic thresholding algorithms have already been used for diagnostic purposes. The aim of this study was to utilize 3D virtual models, generated with a semi-automatic segmentation method, for the treatment planning of minimally invasive periodontal surgeries and to evaluate the accuracy of the virtual models, by comparing digital measurements to direct intrasurgical measurements. METHODS: Four patients with a total of six intrabony periodontal defects were enrolled in the present study. Two months following initial periodontal treatment, a CBCT scan was taken. The novel semi-automatic segmentation method was performed in an open-source medical image processing software (3D Slicer) to acquire virtual 3D models of alveolar and dental structures. Intrasurgical and digital measurements were taken, and results were compared to validate the accuracy of the digital models. Defect characteristics were determined prior to surgery with conventional diagnostic methods and 3D virtual models. Diagnostic assessments were compared to the actual defect morphology during surgery. RESULTS: Differences between intrasurgical and digital measurements in depth and width of intrabony components of periodontal defects averaged 0.31 ± 0.21 mm and 0.41 ± 0.44 mm, respectively. In five out of six cases, defect characteristics could not be assessed precisely with direct clinical measurements and intraoral radiographs. 3D models generated with the presented semi-automatic segmentation method depicted the defect characteristics correctly in all six cases. CONCLUSION: It can be concluded that 3D virtual models acquired with the described semi-automatic segmentation method provide accurate information on intrabony periodontal defect morphologies, thus influencing the treatment strategy. Within the limitations of this study, models were found to be accurate; however, further investigation with a standardized validation process on a large number of participants has to be conducted
    corecore