110 research outputs found

    DIN Spec 91345 RAMI 4.0 compliant data pipelining: An approach to support data understanding and data acquisition in smart manufacturing environments

    Get PDF
    Today, data scientists in the manufacturing domain are confronted with a set of challenges associated to data acquisition as well as data processing including the extraction of valuable in-formation to support both, the work of the manufacturing equipment as well as the manufacturing processes behind it. One essential aspect related to data acquisition is the pipelining, including various commu-nication standards, protocols and technologies to save and transfer heterogenous data. These circumstances make it hard to understand, find, access and extract data from the sources depend-ing on use cases and applications. In order to support this data pipelining process, this thesis proposes the use of the semantic model. The selected semantic model should be able to describe smart manufacturing assets them-selves as well as to access their data along their life-cycle. As a matter of fact, there are many research contributions in smart manufacturing, which already came out with reference architectures or standards for semantic-based meta data descrip-tion or asset classification. This research builds upon these outcomes and introduces a novel se-mantic model-based data pipelining approach using as a basis the Reference Architecture Model for Industry 4.0 (RAMI 4.0).Hoje em dia, os cientistas de dados no domínio da manufatura são confrontados com várias normas, protocolos e tecnologias de comunicação para gravar, processar e transferir vários tipos de dados. Estas circunstâncias tornam difícil compreender, encontrar, aceder e extrair dados necessários para aplicações dependentes de casos de utilização, desde os equipamentos aos respectivos processos de manufatura. Um aspecto essencial poderia ser um processo de canalisação de dados incluindo vários normas de comunicação, protocolos e tecnologias para gravar e transferir dados. Uma solução para suporte deste processo, proposto por esta tese, é a aplicação de um modelo semântico que descreva os próprios recursos de manufactura inteligente e o acesso aos seus dados ao longo do seu ciclo de vida. Muitas das contribuições de investigação em manufatura inteligente já produziram arquitecturas de referência como a RAMI 4.0 ou normas para a descrição semântica de meta dados ou classificação de recursos. Esta investigação baseia-se nestas fontes externas e introduz um novo modelo semântico baseado no Modelo de Arquitectura de Referência para Indústria 4.0 (RAMI 4.0), em conformidade com a abordagem de canalisação de dados no domínio da produção inteligente como caso exemplar de utilização para permitir uma fácil exploração, compreensão, descoberta, selecção e extracção de dados

    International Conference on Computer Science and Communication Engineering

    Get PDF
    UBT Annual International Conference is the 8th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: – Computer Science and Communication Engineering– Management, Business and Economics– Mechatronics, System Engineering and Robotics– Energy Efficiency Engineering– Information Systems and Security– Architecture – Spatial Planning– Civil Engineering , Infrastructure and Environment– Law– Political Science– Journalism , Media and Communication– Food Science and Technology– Pharmaceutical and Natural Sciences– Design– Psychology– Education and Development– Fashion– Music– Art and Digital Media– Dentistry– Applied Medicine– Nursing This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBTUBT – Higher Education Institutio

    Virtual Models Linked with Physical Components in Construction

    Get PDF

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Smart Manufacturing

    Get PDF
    This book is a collection of 11 articles that are published in the corresponding Machines Special Issue “Smart Manufacturing”. It represents the quality, breadth and depth of the most updated study in smart manufacturing (SM); in particular, digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the Internet to expand system capabilities, (3) supporting data-driven decision-making activities at various domains and levels of businesses, or (4) reconfiguring systems to adapt to changes and uncertainties. System smartness can be evaluated by one or a combination of performance metrics such as degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This book features, firstly, the concepts digital triad (DT-II) and Internet of digital triad things (IoDTT), proposed to deal with the complexity, dynamics, and scalability of complex systems simultaneously. This book also features a comprehensive survey of the applications of digital technologies in space instruments; a systematic literature search method is used to investigate the impact of product design and innovation on the development of space instruments. In addition, the survey provides important information and critical considerations for using cutting edge digital technologies in designing and manufacturing space instruments

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Rakennuksen käyttöjärjestelmän luonti: kokonaisvaltainen lähestymistapa

    Get PDF
    Purpose of this thesis is to examine requirements for a building operating system from a holistic perspective. To understand the context of the subject, an extensive literature review was carried out which explores the evolution of operating systems alongside the history of computing, unravelling the concept of an operating system. In addition, various building information systems, including building automation systems and internet of things systems are reviewed in order to understand modern and future trends of building technology. Furthermore, literature review investigates telecommunications and digital identity authentication through their evolution and standardisation towards interoperability, to provide knowledge on how to achieve interoperability in building systems. An interview study was conducted as the empirical part of the study in order to complement the theoretical framework of the thesis. A dozen building digitalisation experts were interviewed, inquiring their insights on the current and future situation of building systems. More closely, open systems, open data, platform ownership, disruption, killer applications, user-centredness, and Finland’s opportunities were discussed in respect of the building operating system. Building operating system requires connection between various technology inside a building, and collaboration between various parties who use and manage the building. The system should exploit open standards and enable open data. User-centred development should be encouraged for the benefits of end users. The system needs to expand globally to achieve critical mass and unleash its full potential as a platform. Each building with similar properties should have the same features, being able to use same services and applications in any building with an operating system, thus enabling portability. The system requires convenient software development kits, application programming interfaces and abstractions for the needs of software and service developers. A vibrant developer community is required to expand the platform and enable a wide range of services and applications.Tämän diplomityön tarkoituksena on tutkia rakennuksen käyttöjärjestelmän holistisia vaatimuksia. Laaja kirjallisuuskatsaus tehtiin aiheen ymmärtämiseksi, joka tutkii käyttöjärjestelmien evoluutiota rinnakkain tietojenkäsittelyn historian kanssa, tarkoituksena hahmottaa käyttöjärjestelmän käsitettä. Lisäksi, eri rakennusten tietojärjestelmiä, mukaan lukien rakennusautomaatiojärjestelmiä ja esineiden internet -järjestelmiä käytiin läpi ymmärtääkseen nykyisiä ja tulevia trendejä rakennusteknologiassa. Edelleen kirjallisuuskatsaus tutkii televiestintää ja sähköistä tunnistautumista niiden kehityksen ja standardisoinnin kautta kohti yhteentoimivuutta, tarjoten tietoa siitä, miten yhteentoimivuutta voitaisiin kehittää rakennusjärjestelmissä. Haastattelututkimus tehtiin diplomityön empiirisenä osuutena, jonka tarkoituksena oli laajentaa työn teoreettista viitekehystä. Tusina rakennusten digitalisaation asiantuntijaa haastateltiin, joilta kysyttiin rakennusjärjestelmien nykytilasta ja tulevaisuudesta. Lähemmin, keskustelut käsittelivät avoimia järjestelmiä, avointa dataa, alustan omistajuutta, disruptiota, menestyssovelluksia, käyttäjäkeskeisyyttä sekä Suomen kansainvälistä potentiaalia rakennuksen käyttöjärjestelmän näkökulmasta. Rakennuksen käyttöjärjestelmä vaatii rakennuksen sisällä olevien eri teknologioiden yhteenliittämisen, sekä yhteistyötä rakennusta käyttävien ja hallinnoivien osapuolten välillä. Järjestelmän pitäisi hyödyntää avoimia standardeja ja mahdollistaa avoimen datan käytön. Käyttäjäkeskeistä suunnittelua pitäisi kannustaa loppukäyttäjien etuja suosien. Järjestelmän täytyy levitä globaalisti saavuttaakseen kriittisen massan ja ottaakseen käyttöön sen koko potentiaalin. Jokaisella samankaltaisella rakennuksella täytyisi olla käytössään yhtäläiset ominaisuudet, mahdollistaen samojen palveluiden ja sovellusten käytön missä tahansa käyttöjärjestelmää käyttävässä rakennuksessa, täten mahdollistaen siirrettävyyden. Järjestelmä vaatii sopivat ohjelmointirajapinnat, abstraktiot ja ohjelmistokehykset sovellus- ja palvelukehittäjien tarpeita varten. Laaja kehitysyhteisö vaaditaan alustan levittämiseksi ja sovellustarjonnan laajentamiseksi

    Interoperability of Enterprise Software and Applications

    Get PDF

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference
    corecore