48,877 research outputs found

    Learning Generative Models with Visual Attention

    Full text link
    Attention has long been proposed by psychologists as important for effectively dealing with the enormous sensory stimulus available in the neocortex. Inspired by the visual attention models in computational neuroscience and the need of object-centric data for generative models, we describe for generative learning framework using attentional mechanisms. Attentional mechanisms can propagate signals from region of interest in a scene to an aligned canonical representation, where generative modeling takes place. By ignoring background clutter, generative models can concentrate their resources on the object of interest. Our model is a proper graphical model where the 2D Similarity transformation is a part of the top-down process. A ConvNet is employed to provide good initializations during posterior inference which is based on Hamiltonian Monte Carlo. Upon learning images of faces, our model can robustly attend to face regions of novel test subjects. More importantly, our model can learn generative models of new faces from a novel dataset of large images where the face locations are not known.Comment: In the proceedings of Neural Information Processing Systems, 201

    Finding any Waldo: zero-shot invariant and efficient visual search

    Full text link
    Searching for a target object in a cluttered scene constitutes a fundamental challenge in daily vision. Visual search must be selective enough to discriminate the target from distractors, invariant to changes in the appearance of the target, efficient to avoid exhaustive exploration of the image, and must generalize to locate novel target objects with zero-shot training. Previous work has focused on searching for perfect matches of a target after extensive category-specific training. Here we show for the first time that humans can efficiently and invariantly search for natural objects in complex scenes. To gain insight into the mechanisms that guide visual search, we propose a biologically inspired computational model that can locate targets without exhaustive sampling and generalize to novel objects. The model provides an approximation to the mechanisms integrating bottom-up and top-down signals during search in natural scenes.Comment: Number of figures: 6 Number of supplementary figures: 1

    Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

    Get PDF
    The primate visual system achieves remarkable visual object recognition performance even in brief presentations and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations such as the amount of noise, the number of neural recording sites, and the number trials, and computational limitations such as the complexity of the decoding classifier and the number of classifier training examples. In this work we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.Comment: 35 pages, 12 figures, extends and expands upon arXiv:1301.353
    corecore