29 research outputs found

    Kalign – an accurate and fast multiple sequence alignment algorithm

    Get PDF
    BACKGROUND: The alignment of multiple protein sequences is a fundamental step in the analysis of biological data. It has traditionally been applied to analyzing protein families for conserved motifs, phylogeny, structural properties, and to improve sensitivity in homology searching. The availability of complete genome sequences has increased the demands on multiple sequence alignment (MSA) programs. Current MSA methods suffer from being either too inaccurate or too computationally expensive to be applied effectively in large-scale comparative genomics. RESULTS: We developed Kalign, a method employing the Wu-Manber string-matching algorithm, to improve both the accuracy and speed of multiple sequence alignment. We compared the speed and accuracy of Kalign to other popular methods using Balibase, Prefab, and a new large test set. Kalign was as accurate as the best other methods on small alignments, but significantly more accurate when aligning large and distantly related sets of sequences. In our comparisons, Kalign was about 10 times faster than ClustalW and, depending on the alignment size, up to 50 times faster than popular iterative methods. CONCLUSION: Kalign is a fast and robust alignment method. It is especially well suited for the increasingly important task of aligning large numbers of sequences

    M-Coffee: combining multiple sequence alignment methods with T-Coffee

    Get PDF
    We introduce M-Coffee, a meta-method for assembling multiple sequence alignments (MSA) by combining the output of several individual methods into one single MSA. M-Coffee is an extension of T-Coffee and uses consistency to estimate a consensus alignment. We show that the procedure is robust to variations in the choice of constituent methods and reasonably tolerant to duplicate MSAs. We also show that performances can be improved by carefully selecting the constituent methods. M-Coffee outperforms all the individual methods on three major reference datasets: HOMSTRAD, Prefab and Balibase. We also show that on a case-by-case basis, M-Coffee is twice as likely to deliver the best alignment than any individual method. Given a collection of pre-computed MSAs, M-Coffee has similar CPU requirements to the original T-Coffee. M-Coffee is a freeware open-source package available from

    Multiple sequence alignment based on set covers

    Full text link
    We introduce a new heuristic for the multiple alignment of a set of sequences. The heuristic is based on a set cover of the residue alphabet of the sequences, and also on the determination of a significant set of blocks comprising subsequences of the sequences to be aligned. These blocks are obtained with the aid of a new data structure, called a suffix-set tree, which is constructed from the input sequences with the guidance of the residue-alphabet set cover and generalizes the well-known suffix tree of the sequence set. We provide performance results on selected BAliBASE amino-acid sequences and compare them with those yielded by some prominent approaches

    Discovering Sequence Motifs with Arbitrary Insertions and Deletions

    Get PDF
    Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. glam2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for “motif-like” alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2

    The accuracy of several multiple sequence alignment programs for proteins

    Get PDF
    BACKGROUND: There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs. RESULTS: We tested nine of the most often used protein alignment programs and compared their results using sequences generated with the simulation software Simprot which creates known alignments under realistic and controlled evolutionary scenarios. We have simulated more than 30000 alignment sets using various evolutionary histories in order to define strengths and weaknesses of each program tested. We found that alignment accuracy is extremely dependent on the number of insertions and deletions in the sequences, and that indel size has a weaker effect. We also considered benchmark alignments from the latest version of BAliBASE and the results relative to BAliBASE- and Simprot-generated data sets were consistent in most cases. CONCLUSION: Our results indicate that employing Simprot's simulated sequences allows the creation of a more flexible and broader range of alignment classes than the usual methods for alignment accuracy assessment. Simprot also allows for a quick and efficient analysis of a wider range of possible evolutionary histories that might not be present in currently available alignment sets. Among the nine programs tested, the iterative approach available in Mafft (L-INS-i) and ProbCons were consistently the most accurate, with Mafft being the faster of the two

    Improvement in accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gap cost

    Get PDF
    BACKGROUND: Multiple sequence alignment (MSA) is a useful tool in bioinformatics. Although many MSA algorithms have been developed, there is still room for improvement in accuracy and speed. In the alignment of a family of protein sequences, global MSA algorithms perform better than local ones in many cases, while local ones perform better than global ones when some sequences have long insertions or deletions (indels) relative to others. Many recent leading MSA algorithms have incorporated pairwise alignment information obtained from a mixture of sources into their scoring system to improve accuracy of alignment containing long indels. RESULTS: We propose a novel group-to-group sequence alignment algorithm that uses a piecewise linear gap cost. We developed a program called PRIME, which employs our proposed algorithm to optimize the well-defined sum-of-pairs score. PRIME stands for Profile-based Randomized Iteration MEthod. We evaluated PRIME and some recent MSA programs using BAliBASE version 3.0 and PREFAB version 4.0 benchmarks. The results of benchmark tests showed that PRIME can construct accurate alignments comparable to the most accurate programs currently available, including L-INS-i of MAFFT, ProbCons, and T-Coffee. CONCLUSION: PRIME enables users to construct accurate alignments without having to employ pairwise alignment information. PRIME is available at

    Alignment of Multiple DNA Sequences by Using Improved GA Operators

    Get PDF
    ABSTRACT One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). It is a critical tool for biologists to identify the relationships between species and also possibly predict the structure and functionality of biological sequences. The general multiple sequence alignment problem is known to be NP-hard, and hence the problem of finding the best possible multiple sequence alignment is intractable. Therefore, a genetic algorithm based approach has been designed to solve the multiple DNA sequence alignment problem by using different genetic operators. Experimental results with different lengths of DNA sequences has been detailed in this paper . It has also shown that how the increase in length will affect the overall quality of the alignment. The extensive experiment on wide range of datasets and the obtained results has shown the effectiveness of the proposed approach in solving multiple DNA sequences. KEYWORDS: Multiple Sequence Alignment, Genetic Algorithms (GAs), DNA Sequences. INTRODUCTION The main components of the biochemical processes of life are proteins and nucleic acids. There are two types of nucleic acids, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA sequences are long biomolecular strands composed of four types of nucleotide bases: adenine (A), guanine (G), cytosine (C), and thymine (T). DNA actually occurs as a double strand of such bases. The stands are held together by hydrogen bonds between complementary bases: A-T and G-C. DNA sequences, which consist of hundreds of millions of nucleotides, define the genome of a particular species. Recent advances in bioinformatics have generated volumes of genome data for biomedical research. For example, many immunity genes in the fruit fly genome have nucleotide sequences that are reminiscent of TCGGGGATTTC

    Statistical Methods for Conservation and Alignment Quality in Proteins

    Get PDF
    Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.Siirretty Doriast

    OXBench:a benchmark for evaluation of protein multiple sequence alignment accuracy

    Get PDF
    BACKGROUND: The alignment of two or more protein sequences provides a powerful guide in the prediction of the protein structure and in identifying key functional residues, however, the utility of any prediction is completely dependent on the accuracy of the alignment. In this paper we describe a suite of reference alignments derived from the comparison of protein three-dimensional structures together with evaluation measures and software that allow automatically generated alignments to be benchmarked. We test the OXBench benchmark suite on alignments generated by the AMPS multiple alignment method, then apply the suite to compare eight different multiple alignment algorithms. The benchmark shows the current state-of-the art for alignment accuracy and provides a baseline against which new alignment algorithms may be judged.RESULTS: The simple hierarchical multiple alignment algorithm, AMPS, performed as well as or better than more modern methods such as CLUSTALW once the PAM250 pair-score matrix was replaced by a BLOSUM series matrix. AMPS gave an accuracy in Structurally Conserved Regions (SCRs) of 89.9% over a set of 672 alignments. The T-COFFEE method on a data set of families with &lt;8 sequences gave 91.4% accuracy, significantly better than CLUSTALW (88.9%) and all other methods considered here. The complete suite is available from http://www.compbio.dundee.ac.uk.CONCLUSIONS: The OXBench suite of reference alignments, evaluation software and results database provide a convenient method to assess progress in sequence alignment techniques. Evaluation measures that were dependent on comparison to a reference alignment were found to give good discrimination between methods. The STAMP Sc Score which is independent of a reference alignment also gave good discrimination. Application of OXBench in this paper shows that with the exception of T-COFFEE, the majority of the improvement in alignment accuracy seen since 1985 stems from improved pair-score matrices rather than algorithmic refinements. The maximum theoretical alignment accuracy obtained by pooling results over all methods was 94.5% with 52.5% accuracy for alignments in the 0-10 percentage identity range. This suggests that further improvements in accuracy will be possible in the future.</p
    corecore