33 research outputs found

    Multi-hop relaying networks in TDD-CDMA systems

    Get PDF
    The communications phenomena at the end of the 20th century were the Internet and mobile telephony. Now, entering the new millennium, an effective combination of the two should become a similarly everyday experience. Current limitations include scarce, exorbitantly priced bandwidth and considerable power consumption at higher data rates. Relaying systems use several shorter communications links instead of the conventional point-to-point transmission. This can allow for a lower power requirement and, due to the shorter broadcast range, bandwidth re-use may be more efficiently exploited. Code division multiple access (CDMA) is emerging as one of the most common methods for multi user access. Combining CDMA with time division duplexing (TDD) provides a system that supports asymmetric communications and relaying cost-effectively. The capacity of CDMA may be reduced by interference from other users, hence it is important that the routing of relays is performed to minimise interference at receivers. This thesis analyses relaying within the context of TDD-CDMA systems. Such a system was included in the initial draft of the European 3G specifications as opportunity driven multiple access (ODMA). Results are presented which demonstrate that ODMA allows for a more flexible capacity coverage trade-off than non-relaying systems. An investigation into the interference characteristics of ODMA shows that most interference occurs close to the base station (BS). Hence it is possible that in-cell routing to avoid the BS may increase capacity. As a result, a novel hybrid network topology is presented. ODMA uses path loss as a metric for routing. This technique does not avoid interference, and hence ODMA shows no capacity increase with the hybrid network. Consequently, a novel interference based routing algorithm and admission control are developed. When at least half the network is engaged in in-cell transmission, the interference based system allows for a higher capacity than a conventional cellular system. In an attempt to reduce transmitted power, a novel congestion based routing algorithm is introduced. This system is shown to have lower power requirement than any other analysed system and, when more than 2 hops are allowed, the highest capacity. The allocation of time slots affects system performance through co-channel interference. To attempt to minimise this, a novel dynamic channel allocation (DCA) algorithm is developed based on the congestion routing algorithm. By combining the global minimisation of system congestion in both time slots and routing, the DCA further increases throughput. Implementing congestion routed relaying, especially with DCA, in any TDD-CDMA system with in-cell calls can show significant performance improvements over conventional cellular systems

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Multicast for ubiquitos streaming of multimedia content to mobile terminals : Network architecture and protocols

    Get PDF
    The Universal Mobile Telecommunication Services (UMTS) network was envisioned to carry a wide range of new services; however, the first UMTS release was not designed to efficiently support multimedia content. In this thesis we analyse several mechanisms, and suggest architectural changes to improve UMTS’s capacity for a subset of the multimedia services; high-bandwidth group services. In our initial work we have suggested how IP multicast protocols can be used in the UMTS network to reduce the required network capacity for group services. This proposal was one of many suggestions for the evolving Multimedia Broadcast/Multicast Service (MBMS) architecture for UMTS. The next technique we have suggested and analysed is a new wireless channel type named the "sticky-channel"; this channel is intended for sparsely populated multicast groups. The sticky-channel is able to stick to mobile multicast members in the boarder area of neighbouring radio cells, thus some base stations does not need to broadcast the multicast data. Consequently, the total number of broadcast channels needed to cover a given area is reduced. There is a marginal reduction of required resources with this technique. In the main part of our work we have studied heterogeneous multihop wireless access for multicast traffic in the UMTS network. In a heterogeneous wireless access network, the wireless resources needed to distribute high-bandwidth group services, can be shared among cooperating network technologies. Mobile terminals with a UMTS interface and an IEEE 802.11 interface are readily available, consequently a heterogeneous network with UMTS and 802.11 links will be easy to deploy. We have described a heterogeneous architecture based on those wireless technologies. In this architecture, the range of a UMTS radio channel is reduced, and local IEEE 802.11-based Mobile Ad Hoc Networks (MANETs) forward the data to users located outside the coverage of the reduced UMTS channel. The wireless resources required to transmit a data packet are proportional to (at least) the square of the distance the packet must travel, thus a reduction in the channel range releases a significant amount of UMTS radio resources. Detailed simulation results showed acceptable service quality when the UMTS broadcast channel range is more than halved. Finally we have studied whether Forward Error Correction (FEC) at the packet-level on multicast flows could improve the performance of the heterogeneous wireless access network. There is a marginal improvement. Most of the protection brought by the FEC code has been used to repair the increased packet-loss introduced by the FEC overhead

    Low-latency Data Uploading in D2D-enabled Cellular Networks

    Get PDF
    指導教員:姜 暁

    VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc

    Full text link

    Adaptive subframe allocation for next generation multimedia delivery over hybrid LTE unicast broadcast

    Get PDF
    The continued global roll-out of long term evolution (LTE) networks is providing mobile users with perpetually increasing ubiquitous access to a rich selection of high quality multimedia. Interactive viewing experiences including 3-D or free-viewpoint video require the synchronous delivery of multiple video streams. This paper presents a novel hybrid unicast broadcast synchronisation (HUBS) framework to synchronously deliver multi-stream content. Previous techniques on hybrid LTE implementations include staggered modulation and coding scheme grouping, adaptive modulation coding or implementing error recover techniques; the work presented here instead focuses on dynamic allocation of resources between unicast and broadcast, improving stream synchronisation as well as overall cell resource usage. Furthermore, the HUBS framework has been developed to work within the limitations imposed by the LTE specification. Performance evaluation of the framework is performed through the simulation of probable future scenarios, where a popular live event is broadcast with stereo 3-D or multi-angle companion views interactively offered to capable users. The proposed framework forms a ``HUBS group'' that monitors the radio bearer queues to establish a time lead or lag between broadcast and unicast streams. Since unicast and broadcast share the same radio resources, the number of subframes allocated to the broadcast transmission are then dynamically increased or decreased to minimise the average lead/lag time offset between the streams. Dynamic allocation showed improvements for all services across the cell, whilst keeping streams synchronised despite increased user loading

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin
    corecore