858 research outputs found

    Development and validation of the Euler-Lagrange formulation on a parallel and unstructured solver for large-eddy simulation

    Get PDF
    De nombreuses applications industrielles mettent en jeu des écoulements gaz-particules, comme les turbines aéronautiques et les réacteurs a lit fluidisé de l'industrie chimique. La prédiction des propriétés de la phase dispersée, est essentielle à l'amélioration et la conception des dispositifs conformément aux nouvelles normes européennes des émissions polluantes. L'objectif de cette these est de développer le formalisme Euler- Lagrange dans un solveur parallèle et non-structuré pour la simulation aux grandes échelles pour ce type d'écoulements. Ce travail est motivé par l'augmentation rapide de la puissance de calcul des machines massivement parallèles qui ouvre une nouvelle voie pour des simulations qui étaient prohibitives il y a une décennie. Une attention particulière a été portée aux structures de données afin de conserver une certaine simplicité et la portabilité du code sur des differentes architectures. Les développements sont validés pour deux configurations : un cas académique de turbulence homogène isotrope décroissante et un calcul polydisperse d'un jet turbulent recirculant chargé en particules. L'équilibrage de charges de particules est mis en évidence comme une solution prometteuse pour les simulations diphasiques Lagrangiennes afin d'améliorer les performances des calculs lorsque le déséquilibrage est trop important. ABSTRACT : Particle-laden flows occur in industrial applications ranging from droplets in gas turbines tofluidized bed in chemical industry. Prediction of the dispersed phase properties such as concentration and dynamics are crucial for the design of more efficient devices that meet the new pollutant regulations of the European community. The objective of this thesis is to develop an Euler-Lagrange formulation on a parallel and unstructured solver for large- eddy simulation. This work is motivated by the rapid increase in computing power which opens a new way for simulations that were prohibitive one decade ago. Special attention is taken to keep data structure simplicity and code portability. Developments are validated in two configurations : an academic test of a decaying homogeneous isotropic turbulence and a polydisperse two-phase flow of a confined bluff body. The use of load-balancing capabilities is highlighted as a promising solution in Lagrangian two-phase flow simulations to improve performance when strong imbalance of the dispersed phase is presen

    Numerical and experimental investigation of air pollutant dispersion in urban areas

    Get PDF
    Air pollution is predominantly an urban problem affecting residents living in or around cities. According to the 2014 report of the World Health Organization (WHO), air pollution is now the world’s largest single environmental health risk (WHO 2016). This problem is exacerbated by rapid global population growth (Wania, Bruse et al. 2012), and densely populated urban areas are hotspots of this high risk due to outdoor air pollutant exposure, which also affects indoor air quality. Despite the advancements in urban policies necessary for curtailing air pollutant emissions, it is vital to adopt appropriate strategies in urban planning to manage and reduce outdoor air pollution to minimise the negative impact on public health (Li, Shi et al. 2020). Natural ventilation in the built environment is associated with enhancing outdoor and indoor air quality due to its air pollutant mitigation capacity (Li, Ming et al. 2021). Therefore, natural ventilation capacity deserves special attention from a fundamental perspective, resulting in novel solutions for combating this global problem. This research project focuses on the underlying wind-structure interaction mechanisms involved in the air pollutant dispersion process around buildings. The effect of building cross-section shape and air pollutant density are investigated, and a new fundamental concept of air pollutant emission regions is introduced. The effect of building cross-section shape is further investigated in an idealised generic building cluster based on the fundamental flow structure. Additionally, mean and transient features of air pollutant dispersion based on both continuous air pollutant emission and stagnant air pollutants around a generic isolated building are explored in detail. Finally, two new indices based on air pollutant exposure time in a scaled model are proposed to capture full-scale air pollutant time integrated with air pollutant concentration

    A spatial particle correlation-function analysis in non-isothermal dilute particle-laden turbulent flows

    Get PDF
    In dilute gas-solid turbulent flows, as that encountered, for example, in pulverized coal combustion processes, the correct prediction of the non-isothermal/reactive particle-laden turbulent mixture relies on the accuracy of the modeling of the local and unsteady particle behavior, which affects the hydro-thermodynamic coupling and the heat transfer and transport in and between the phases and at wall. In very dilute mixtures composed of highly inertial solid particles, such a local and unsteady behavior is the result of the particle interactions with very distant and independent turbulent eddies, namely with different dynamic and thermal turbulent scales. Such interactions strongly modify the local particle velocity and temperature distributions, changing the local evolution of the properties of the dispersed phase. Their knowledge is thus crucial when modeling unsteady particle-laden turbulent flows. In this work, the focus is on the particle temperature distribution. Its characterization is provided by means of an analysis of the two-particle correlation functions in the frame of the direct numerical simulation of non-isothermal homogeneous isotropic, statistically stationary, turbulent flows

    Effervescent Breakup and Combustion of Liquid Fuels: Experiment and Modelling

    Get PDF
    Tato práce se zaměřuje na oblast effervescentních sprejů a jejich aplikace na kapalné spalování s důrazem na průmyslové spalovací komory. Oba aspekty – modelování a experiment – jsou řešeny. Práce obsahuje obecný úvod, ve kterém jsou vysvětleny základní jevy rozpadu kapaliny a vířivého spalování a dále je představena effervescentní atomizace. Poté jsou popsány použité experimentální postupy jak pro měření spreje, tak pro měření tepelných toků do stěn při spalování. V následující kapitole jsou popsány numerické modely a jejich podstata je vysvětlena. Jsou zde uvedeny modely pro rozpad spreje, turbulenci a spalování použité během výzkumu. Vlastní výsledky práce jsou uvedeny formou samostatných článků (vydaných nebo přijatých) s dodatečnou částí věnovanou nepublikovaným relevantním výsledkům. Bylo zjištěno, že standardní modely sprejů jsou do jisté míry schopny popsat effervescentní spreje. Nicméně aby bylo možné predikovat plamen kapalného spreje, jsou zapotřebí detailnější modely sprejů, které dokáží přesně zachytit změnu průměrů kapek v radiálním a axiálním směru. Experimentální měření effervescentních sprejů bylo provedeno pomocí navrhnuté metodiky. Výsledky měření byly analyzovány s důrazem na radiální a axiální vývoj průměrů kapek a některé nové jevy byly popsány. Nepřímá úměrnost mezi gas-liquid-ratio a středním průměrem kapek byla potvrzena. Dále by popsán jev, kdy pro různé axiální vzdálenosti které dojde k úplnému převrácení závislosti středního průměru na axiální vzdálenosti. V závěru je uvedeno shrnutí, které rekapituluje hlavní výsledků a závěry. V závěrečných poznámkách je nastíněn možný budoucí postup. Experimentální data pro ověřování budoucích effervescentních modelů jsou poskytnuta.This thesis presents an investigation of effervescent sprays and their application to spray combustion with emphasis on large-scale combustors. Both aspects – modelling and experiment – are addressed. The thesis contains a general introductory part, where underlying phenomena of spray forming and turbulent combustion are explained and effervescent atomization is presented. Then, adopted experimental approaches are described both for the spray measurement and for the measurement of wall heat fluxes during combustion experiments. In the following chapter numerical models and their philosophy is discussed. Models for spray formation, turbulence and combustion adopted during the research are introduced and explained. The actual results of the thesis are presented in form of separate papers (published or accepted for publication) with an additional section devoted to unpublished relevant results. It is found that standard spray models can to some extent represent effervescent sprays. However, in order to predict a spray flame more detailed spray models are needed in order to describe accurately radial and axial variations of drop sizes. Numerous experimental measurements of effervescent sprays are performed using a proposed methodology. Drop size data are analysed with emphasis on radial and axial drop size evolutions and some new phenomena are described. The inverse relationship between gas-liquid-ratio and mean diameter has been confirmed. Moreover a complete reversal in radial mean diameter trends for various axial locations has been described. Finally, a result summary is put forward that recapitulates the main accomplishments and conclusions. In the closing remarks possible future research is outlined. Experimental data for future effervescent model validations are disclosed.

    Robust numerical schemes for Eulerian spray DNS and LES in two-phase turbulent flows

    Get PDF
    International audienceLarge Eddy Simulation (LES) and Direct numerical Simulation (DNS) of polydisperse evaporating sprays with Eulerian models are very promising tools for high performance computing of combustion applications. They are able to describe the turbulent dispersion and evaporation and properly predict the combustion regimes. However, the spray system of conservation equations has a convective part which is either similar to gas dynamics Euler equations with a real gas type state law or to the pressureless gas dynamics (PGD), depending on the local flow regime and droplet Stokes number; so, they usually involve singularities due to model closure assumptions and require dedicated numerical schemes. Besides, it is desirable to cope with exactly zero droplet density in some zones of the flow, especially near the injection zone, where droplets are injected in only some spatial locations. Even if the issue has been successfully tackled in de Chaisemartin (2009); Fréret et al. (2010) in the framework of PGD with the use of accurate kinetic schemes, it cannot be directly extended to general gas dynamics. The purpose of the present contribution is to introduce a new generation of numerical methods based on relaxation schemes which are able to treat both PGD and general gas dynamics, as well as to cope in a robust manner with vacuum zones and natural singularities of the resulting system of conservation equations. The proposed hybrid relaxation scheme and algorithms are validated through comparisons with analytical solutions and other numerical strategies on 1D and 2D configurations. They exhibit a very robust behavior and are a very promising candidate for more complex applications since they provide solutions to key numerical issues of the actual Eulerian spray DNS and LES models

    Development of an algebraic-closure-based moment method for unsteady Eulerian simulations of particle-laden turbulent flows in very dilute regime

    Get PDF
    An algebraic-closure-based moment method (ACBMM) is developed for unsteady Eulerian particle simulations, coupled with direct numerical simulations (DNSs) of fluid turbulent flows, in very dilute regime and up to large Stokes numbers StK (based on the Kolmogorov timescale) or moderate Stokes numbers St (based on the turbulent macroscale seen by the particles). The proposed method is developed in the frame of a conditional statistical approach which provides a local and instantaneous characterization of the dispersed-phase dynamic accounting for the effect of crossing between particle trajectories which becomes substantial for StK > 1. The computed Eulerian quantities are low-order moments of the conditional probability density function (PDF) and the corresponding governing equations are derived from the PDF kinetic equation in the general frame of the kinetic theory of gases. At the first order, the computation of the mesoscopic particle number density and velocity requires the modeling of the second-order moment tensor appearing in the particle momentum equation and referred to as random uncorrelated motion (RUM) particle kinetic stress tensor. The current work proposes a variety of different algebraic closures for the deviatoric part of the tensor. An evaluation of some effective propositions is given by performing an a priori analysis using particle Eulerian fields which are extracted from particle Lagrangian simulations coupled with DNS of a temporal particle-laden turbulent planar jet. Several million-particle simulations are analyzed in order to assess the models for various Stokes numbers. It is apparent that the most fruitful are explicit algebraic stress models (2UEASM) which are based on an equilibrium assumption of RUM anisotropy for which explicit solutions are provided by means of a polynomial representation for tensor functions. These models compare very well with Eulerian–Lagrangian DNSs and properly represent all crucial trends extracted from such simulations

    Urban Air Pollution Modeling

    Get PDF

    Methodology for the numerical prediction of pollutant formation in gas turbine combustors and associated validation experiments

    Get PDF
    International audienceFor aircraft engine manufacturers the formation of pollutants such as NOx or soot particles is an important issue because the regulations on pollutant emissions are becoming increasingly stringent. In order to comply with these regulations, new concepts of gas turbine combustors must be developed with the help of simulation tools. In this paper we present two different strategies, proposed by ONERA and DLR respectively, to simulate soot or NOx formation in combustors. The first one is based on simple chemistry models allowing significant effort to be spent on the LES description of the flow, while the second one is based on more accurate, but also more expensive, models for soot chemistry and physics. Combustion experiments dedicated to the validation of these strategies are described next: The first one, performed at DLR, was operated at a semi-technical scale and aimed at very accurate and comprehensive information on soot formation and oxidation under well-defined experimental conditions; the second one, characterized at ONERA, was aimed at reproducing the severe conditions encountered in realistic gas turbine combustors. In the third part of the paper the results of combustion simulations are compared to those of the validation experiments. It is shown that a fine description of the physics and chemistry involved in the pollutant formation is necessary but not sufficient to obtain quantitative predictions of pollutant formation. An accurate calculation of the turbulent reactive flow interacting with pollutant formation and influencing dilution, oxidation and transport is also required: when the temperature field is correctly reproduced, as is the case of the ONERA simulation of the DLR combustor, the prediction of soot formation is quite satisfactory while difficulty in reproducing the temperature field in the TLC combustor leads to overestimations of NOx and soot concentrations.Pour les constructeurs de moteurs d’avion, la formation de polluants comme les NOx ou les particules de suies est une question importante car la réglementation sur les émissions polluantes est de plus en plus sévère. Pour respecter cette réglementation, de nouveaux concepts de foyers de turbine à gaz doivent être développés avec l’aide d’outils de simulation. Dans cet article, nous présentons deux stratégies différentes proposées par l’ONERA et le DLR pour simuler la formation des suies et des NOx dans les chambres de combustion. La première est basée sur des modèles chimiques simples permettant de faire porter l’effort de calcul sur la description LES de l’écoulement, tandis que la seconde est basée sur des modèles physico-chimiques de formation des suies plus précis mais aussi plus coûteux en temps de calcul. Des expériences de combustion conçues pour la validation de ces stratégies sont ensuite décrites : La première, réalisée au DLR, reproduit la combustion à une échelle semi-industrielle et a pour but de donner une information très précise et complète sur les mécanismes de formation des suies et leur oxydation dans des conditions expérimentales parfaitement maîtrisées ; la seconde, réalisée à l’ONERA, a pour but de reproduire de façon réaliste les conditions sévères rencontrées dans les foyers de turbine à gaz industrielles. Dans la troisième partie du papier, les résultats des simulations de combustion sont comparés à ceux des expériences de validation. Il est démontré que la description précise de la physique et de la chimie intervenant dans la formation des polluants est nécessaire mais non suffisante pour simuler correctement les quantités de polluants formés. Un calcul précis de l’écoulement turbulent réactif interagissant avec les mécanismes de formation, de dilution, d’oxydation et de transport des polluants est également nécessaire : Lorsque le champ de température est correctement reproduit comme c’est le cas pour la simulation ONERA du foyer DLR, la simulation de la formation des suies est assez satisfaisante, alors qu’une difficulté pour reproduire le champ de température dans le foyer TLC conduit à une surestimation des concentrations de NOx et de suies
    corecore