408 research outputs found

    Structured Random Linear Codes (SRLC): Bridging the Gap between Block and Convolutional Codes

    Get PDF
    Several types of AL-FEC (Application-Level FEC) codes for the Packet Erasure Channel exist. Random Linear Codes (RLC), where redundancy packets consist of random linear combinations of source packets over a certain finite field, are a simple yet efficient coding technique, for instance massively used for Network Coding applications. However the price to pay is a high encoding and decoding complexity, especially when working on GF(28)GF(2^8), which seriously limits the number of packets in the encoding window. On the opposite, structured block codes have been designed for situations where the set of source packets is known in advance, for instance with file transfer applications. Here the encoding and decoding complexity is controlled, even for huge block sizes, thanks to the sparse nature of the code and advanced decoding techniques that exploit this sparseness (e.g., Structured Gaussian Elimination). But their design also prevents their use in convolutional use-cases featuring an encoding window that slides over a continuous set of incoming packets. In this work we try to bridge the gap between these two code classes, bringing some structure to RLC codes in order to enlarge the use-cases where they can be efficiently used: in convolutional mode (as any RLC code), but also in block mode with either tiny, medium or large block sizes. We also demonstrate how to design compact signaling for these codes (for encoder/decoder synchronization), which is an essential practical aspect.Comment: 7 pages, 12 figure

    Memory and Complexity Analysis of On-the-Fly Coding Schemes for Multimedia Multicast Communications

    Get PDF
    A new class of erasure codes for delay-constraint applications, called on-the-fly coding, have recently been introduced for their improvements in terms of recovery delay and achievable capacity. Despite their promising characteristics, little is known about the complexity of the systematic and non-systematic variants of this code, notably for live multicast transmission of multimedia content which is their ideal use case. Our paper aims to fill this gap and targets specifically the metrics relevant to mobile receivers with limited resources: buffer size requirements and computation complexity of the receiver. As our contribution, we evaluate both code variants on uniform and bursty erasure channels. Results obtained are unequivocal and demonstrate that the systematic codes outperform the nonsystematic ones, in terms of both the buffer occupancy and computation overhead

    Rethinking reliability for long-delay networks

    Get PDF
    Delay Tolerant Networking (DTN) is currently an open research area following the interest of space companies in the deployment of Internet protocols for the space Internet. Thus, these last years have seen an increase in the number of DTN protocol proposals such as Saratoga or LTP-T. However, the goal of these protocols are more to send much error-free data during a short contact time rather than operating to a strictly speaking reliable data transfer. Beside this, several research work have proposed efficient acknowledgment schemes based on the SNACK mechanism. However, these acknowledgement strategies are not compliant with the DTN protocol principle. In this paper, we propose a novel reliability mechanism with an implicit acknowledgment strategy that could be used either within these new DTN proposals or in the context of multicast transport protocols. This proposal is based on a new erasure coding concept specifically designed to operate efficient reliable transfer over bi-directional links

    Coding in 802.11 WLANs

    Get PDF
    Forward error correction (FEC) coding is widely used in communication systems to correct transmis- sion errors. In IEEE 802.11a/g transmitters, convolutional codes are used for FEC at the physical (PHY) layer. As is typical in wireless systems, only a limited choice of pre-speci¯ed coding rates is supported. These are implemented in hardware and thus di±cult to change, and the coding rates are selected with point to point operation in mind. This thesis is concerned with using FEC coding in 802.11 WLANs in more interesting ways that are better aligned with application requirements. For example, coding to support multicast tra±c rather than simple point to point tra±c; coding that is cognisant of the multiuser nature of the wireless channel; and coding which takes account of delay requirements as well as losses. We consider layering additional coding on top of the existing 802.11 PHY layer coding, and investigate the tradeo® between higher layer coding and PHY layer modulation and FEC coding as well as MAC layer scheduling. Firstly we consider the joint multicast performance of higher-layer fountain coding concatenated with 802.11a/g OFDM PHY modulation/coding. A study on the optimal choice of PHY rates with and without fountain coding is carried out for standard 802.11 WLANs. We ¯nd that, in contrast to studies in cellular networks, in 802.11a/g WLANs the PHY rate that optimizes uncoded multicast performance is also close to optimal for fountain-coded multicast tra±c. This indicates that in 802.11a/g WLANs cross-layer rate control for higher-layer fountain coding concatenated with physical layer modulation and FEC would bring few bene¯ts. Secondly, using experimental measurements taken in an outdoor environment, we model the chan- nel provided by outdoor 802.11 links as a hybrid binary symmetric/packet erasure channel. This hybrid channel o®ers capacity increases of more than 100% compared to a conventional packet erasure channel (PEC) over a wide range of RSSIs. Based upon the established channel model, we further consider the potential performance gains of adopting a binary symmetric channel (BSC) paradigm for multi-destination aggregations in 802.11 WLANs. We consider two BSC-based higher-layer coding approaches, i.e. superposition coding and a simpler time-sharing coding, for multi-destination aggre- gated packets. The performance results for both unicast and multicast tra±c, taking account of MAC layer overheads, demonstrate that increases in network throughput of more than 100% are possible over a wide range of channel conditions, and that the simpler time-sharing approach yields most of these gains and have minor loss of performance. Finally, we consider the proportional fair allocation of high-layer coding rates and airtimes in 802.11 WLANs, taking link losses and delay constraints into account. We ¯nd that a layered approach of separating MAC scheduling and higher-layer coding rate selection is optimal. The proportional fair coding rate and airtime allocation (i) assigns equal total airtime (i.e. airtime including both successful and failed transmissions) to every station in a WLAN, (ii) the station airtimes sum to unity (ensuring operation at the rate region boundary), and (iii) the optimal coding rate is selected to maximise goodput (treating packets decoded after the delay deadline as losses)

    High reliability downlink MU-MIMO with new encoded OSTBC approach and superposition modulated side information

    Get PDF
    Abstract. The promise of Fifth Generation Mobile Network (5G) heralded 5G-era with apparently unlimited potential outcomes. It resulted in the emergence of new paradigms of thought, better approaches to lead business, new innovative solutions, services and products, and is expected to transform the world as we know it. With the advent of some of those new technologies and use cases which deviate from the traditional human-centric, delay tolerant applications, the need for Ultra-Reliable Low-Latency Communications (URLLC) in the 5G wireless network has become indispensable. In this thesis we investigate how to improve the reliability of a downlink multiuser (MU) MIMO transmission scheme with the use of a new approach of orthogonal space time block codes (OSTBC) and network coding with superposition modulated system and side information. The main advantage here is that we show multiple users can be accommodated with the same resource. This is quite useful in a wireless system where resources are always restricted. This therefore is a combination of two techniques to further enhance reliability. Orthogonality is useful in terms of resolving different signals from multiple antennas in a reduced complexity configuration. Superposition modulation with side information is important as it facilitates the recovery of symbols while still keeping the energy normalized. Thus we carried out a detailed analysis with the new OSTBC approach. It is shown that the performance of a multiuser (MU) MIMO system can be improved significantly in terms of bit, block and frame error rates (BER, BLER and FER) as reliability measures. By accommodating a reasonable number of multiple users, high reliability is achieved at the expense of bringing down the rate. To compensate for the low rate, conventional OSTBC is considered as well, where, as a penalty to pay, multiple orthogonal resources are required
    corecore