27,704 research outputs found

    Alignment of helical membrane protein sequences using AlignMe

    Get PDF
    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme​/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set

    Structure of a bacterial type IV secretion core complex at subnanometre resolution

    Get PDF
    Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived

    Rampant exchange of the structure and function of extramembrane domains between membrane and water soluble proteins.

    Get PDF
    Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp

    The aspartic proteinase family of three Phytophthora species

    Get PDF
    Background - Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to humans) and contain conserved motifs and landmark residues. APs fulfil critical roles in infectious organisms and their host cells. Annotation of Phytophthora APs would provide invaluable information for studies into their roles in the physiology of Phytophthora species and interactions with their hosts. Results - Genomes of Phytophthora infestans, P. sojae and P. ramorum contain 11-12 genes encoding APs. Nine of the original gene models in the P. infestans database and several in P. sojae and P. ramorum (three and four, respectively) were erroneous. Gene models were corrected on the basis of EST data, consistent positioning of introns between orthologues and conservation of hallmark motifs. Phylogenetic analysis resolved the Phytophthora APs into 5 clades. Of the 12 sub-families, several contained an unconventional architecture, as they either lacked a signal peptide or a propart region. Remarkably, almost all APs are predicted to be membrane-bound. Conclusions - One of the twelve Phytophthora APs is an unprecedented fusion protein with a putative G-protein coupled receptor as the C-terminal partner. The others appear to be related to well-documented enzymes from other species, including a vacuolar enzyme that is encoded in every fungal genome sequenced to date. Unexpectedly, however, the oomycetes were found to have both active and probably-inactive forms of an AP similar to vertebrate BACE, the enzyme responsible for initiating the processing cascade that generates the Aß peptide central to Alzheimer's Disease. The oomycetes also encode enzymes similar to plasmepsin V, a membrane-bound AP that cleaves effector proteins of the malaria parasite Plasmodium falciparum during their translocation into the host red blood cell. Since the translocation of Phytophthora effector proteins is currently a topic of intense research activity, the identification in Phytophthora of potential functional homologues of plasmepsin V would appear worthy of investigation. Indeed, elucidation of the physiological roles of the APs identified here offers areas for future study. The significant revision of gene models and detailed annotation presented here should significantly facilitate experimental design
    corecore