5,505 research outputs found

    GazeTouchPIN: Protecting Sensitive Data on Mobile Devices Using Secure Multimodal Authentication

    Get PDF
    Although mobile devices provide access to a plethora of sensitive data, most users still only protect them with PINs or patterns, which are vulnerable to side-channel attacks (e.g., shoulder surfing). How-ever, prior research has shown that privacy-aware users are willing to take further steps to protect their private data. We propose GazeTouchPIN, a novel secure authentication scheme for mobile devices that combines gaze and touch input. Our multimodal approach complicates shoulder-surfing attacks by requiring attackers to ob-serve the screen as well as the user’s eyes to and the password. We evaluate the security and usability of GazeTouchPIN in two user studies (N=30). We found that while GazeTouchPIN requires longer entry times, privacy aware users would use it on-demand when feeling observed or when accessing sensitive data. The results show that successful shoulder surfing attack rate drops from 68% to 10.4%when using GazeTouchPIN

    GTmoPass: Two-factor Authentication on Public Displays Using Gaze-touch Passwords and Personal Mobile Devices

    Get PDF
    As public displays continue to deliver increasingly private and personalized content, there is a need to ensure that only the legitimate users can access private information in sensitive contexts. While public displays can adopt similar authentication concepts like those used on public terminals (e.g., ATMs), authentication in public is subject to a number of risks. Namely, adversaries can uncover a user's password through (1) shoulder surfing, (2) thermal attacks, or (3) smudge attacks. To address this problem we propose GTmoPass, an authentication architecture that enables Multi-factor user authentication on public displays. The first factor is a knowledge-factor: we employ a shoulder-surfing resilient multimodal scheme that combines gaze and touch input for password entry. The second factor is a possession-factor: users utilize their personal mobile devices, on which they enter the password. Credentials are securely transmitted to a server via Bluetooth beacons. We describe the implementation of GTmoPass and report on an evaluation of its usability and security, which shows that although authentication using GTmoPass is slightly slower than traditional methods, it protects against the three aforementioned threats

    GazeTouchPass: Multimodal Authentication Using Gaze and Touch on Mobile Devices

    Get PDF
    We propose a multimodal scheme, GazeTouchPass, that combines gaze and touch for shoulder-surfing resistant user authentication on mobile devices. GazeTouchPass allows passwords with multiple switches between input modalities during authentication. This requires attackers to simultaneously observe the device screen and the user's eyes to find the password. We evaluate the security and usability of GazeTouchPass in two user studies. Our findings show that GazeTouchPass is usable and significantly more secure than single-modal authentication against basic and even advanced shoulder-surfing attacks

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    Designing Usable and Secure Authentication Mechanisms for Public Spaces

    Get PDF
    Usable and secure authentication is a research field that approaches different challenges related to authentication, including security, from a human-computer interaction perspective. That is, work in this field tries to overcome security, memorability and performance problems that are related to the interaction with an authentication mechanism. More and more services that require authentication, like ticket vending machines or automated teller machines (ATMs), take place in a public setting, in which security threats are more inherent than in other settings. In this work, we approach the problem of usable and secure authentication for public spaces. The key result of the work reported here is a set of well-founded criteria for the systematic evaluation of authentication mechanisms. These criteria are justified by two different types of investigation, which are on the one hand prototypical examples of authentication mechanisms with improved usability and security, and on the other hand empirical studies of security-related behavior in public spaces. So this work can be structured in three steps: Firstly, we present five authentication mechanisms that were designed to overcome the main weaknesses of related work which we identified using a newly created categorization of authentication mechanisms for public spaces. The systems were evaluated in detail and showed encouraging results for future use. This and the negative sides and problems that we encountered with these systems helped us to gain diverse insights on the design and evaluation process of such systems in general. It showed that the development process of authentication mechanisms for public spaces needs to be improved to create better results. Along with this, it provided insights on why related work is difficult to compare to each other. Keeping this in mind, first criteria were identified that can fill these holes and improve design and evaluation of authentication mechanisms, with a focus on the public setting. Furthermore, a series of work was performed to gain insights on factors influencing the quality of authentication mechanisms and to define a catalog of criteria that can be used to support creating such systems. It includes a long-term study of different PIN-entry systems as well as two field studies and field interviews on real world ATM-use. With this, we could refine the previous criteria and define additional criteria, many of them related to human factors. For instance, we showed that social issues, like trust, can highly affect the security of an authentication mechanism. We used these results to define a catalog of seven criteria. Besides their definition, we provide information on how applying them influences the design, implementation and evaluation of a the development process, and more specifically, how adherence improves authentication in general. A comparison of two authentication mechanisms for public spaces shows that a system that fulfills the criteria outperforms a system with less compliance. We could also show that compliance not only improves the authentication mechanisms themselves, it also allows for detailed comparisons between different systems

    Just Gaze and Wave: Exploring the Use of Gaze and Gestures for Shoulder-surfing Resilient Authentication

    Get PDF
    Eye-gaze and mid-air gestures are promising for resisting various types of side-channel attacks during authentication. However, to date, a comparison of the different authentication modalities is missing. We investigate multiple authentication mechanisms that leverage gestures, eye gaze, and a multimodal combination of them and study their resilience to shoulder surfing. To this end, we report on our implementation of three schemes and results from usability and security evaluations where we also experimented with fixed and randomized layouts. We found that the gaze-based approach outperforms the other schemes in terms of input time, error rate, perceived workload, and resistance to observation attacks, and that randomizing the layout does not improve observation resistance enough to warrant the reduced usability. Our work further underlines the significance of replicating previous eye tracking studies using today's sensors as we show significant improvement over similar previously introduced gaze-based authentication systems

    Entering PIN codes by smooth pursuit eye movements

    Get PDF
    Despite its potential gaze interaction is still not a widely-used interaction concept. Major drawbacks as the calibration, strain of the eyes and the high number of false alarms are associated with gaze based interaction and limit its practicability for every-day human computer interaction. In this paper two experiments are described which use smooth pursuit eye movements on moving display buttons. The first experiment was conducted to extract an easy and fast interaction concept and at the same time to collect data to develop a specific but robust algorithm. In a follow-up experiment, twelve conventionally calibrated participants interacted successfully with the system. For another group of twelve people the eye tracker was not calibrated individually, but on a third person. Results show that for both groups interaction was possible without false alarms. Both groups rated the user experience of the system as positive

    RepliCueAuth: Validating the Use of a lab-based Virtual Reality Setup for Evaluating Authentication System

    Get PDF
    Evaluating novel authentication systems is often costly and time-consuming. In this work, we assess the suitability of using Virtual Reality (VR) to evaluate the usability and security of real-world authentication systems. To this end, we conducted a replication study and built a virtual replica of CueAuth [52], a recently introduced authentication scheme, and report on results from: (1) a lab-based in-VR usability study (N=20) evaluating user performance; (2) an online security study (N=22) evaluating system’s observation resistance through virtual avatars; and (3) a comparison between our results and those previously reported in the real-world evaluation. Our analysis indicates that VR can serve as a suitable test-bed for human-centred evaluations of real-world authentication schemes, but the used VR technology can have an impact on the evaluation. Our work is a first step towards augmenting the design and evaluation spectrum of authentication systems and offers ground work for more research to follow

    RubikAuth: Fast and Secure Authentication in Virtual Reality

    Get PDF
    There is a growing need for usable and secure authentication in virtual reality (VR). Established concepts (e.g., 2D graphical PINs) are vulnerable to observation attacks, and proposed alternatives are relatively slow. We present RubikAuth, a novel authentication scheme for VR where users authenticate quickly by selecting digits from a virtual 3D cube that is manipulated with a handheld controller. We report two studies comparing how pointing using gaze, head pose, and controller tapping impacts RubikAuth's usability and observation resistance under three realistic threat models. Entering a four-symbol RubikAuth password is fast: 1.69 s to 3.5 s using controller tapping, 2.35 s to 4.68 s using head pose, and 2.39 s to 4.92 s using gaze and highly resilient to observations; 97.78% to 100% of observation attacks were unsuccessful. Our results suggest that providing attackers with support material contributes to more realistic security evaluations
    • 

    corecore