8,731 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection

    Full text link
    Machine learning based solutions have been successfully employed for automatic detection of malware in Android applications. However, machine learning models are known to lack robustness against inputs crafted by an adversary. So far, the adversarial examples can only deceive Android malware detectors that rely on syntactic features, and the perturbations can only be implemented by simply modifying Android manifest. While recent Android malware detectors rely more on semantic features from Dalvik bytecode rather than manifest, existing attacking/defending methods are no longer effective. In this paper, we introduce a new highly-effective attack that generates adversarial examples of Android malware and evades being detected by the current models. To this end, we propose a method of applying optimal perturbations onto Android APK using a substitute model. Based on the transferability concept, the perturbations that successfully deceive the substitute model are likely to deceive the original models as well. We develop an automated tool to generate the adversarial examples without human intervention to apply the attacks. In contrast to existing works, the adversarial examples crafted by our method can also deceive recent machine learning based detectors that rely on semantic features such as control-flow-graph. The perturbations can also be implemented directly onto APK's Dalvik bytecode rather than Android manifest to evade from recent detectors. We evaluated the proposed manipulation methods for adversarial examples by using the same datasets that Drebin and MaMadroid (5879 malware samples) used. Our results show that, the malware detection rates decreased from 96% to 1% in MaMaDroid, and from 97% to 1% in Drebin, with just a small distortion generated by our adversarial examples manipulation method.Comment: 15 pages, 11 figure

    An Evasion Attack against ML-based Phishing URL Detectors

    Full text link
    Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To address this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.Comment: Draft for ACM TOP
    • …
    corecore