464 research outputs found

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal

    Real-Time Trajectory Generation and Control of a Semi-Omnidirectional Mobile Robot

    Get PDF
    When controlling a wheeled mobile robot with four independently steerable driving wheels, the control of the wheel coordination must be handled. Both the direction and velocity of the wheels must be coordinated to allow for proper operation of the robot. The focus of this work is on the coordination of the wheel directions. Such coordination is mostly done by solving constraint equations of the system kinematics, but when the demands on the coordination are high, it is sometimes necessary to include the steering dynamics in the coordination control. With dynamics included the complexity of the wheel coordination increases, since constraints dependent on required angle changes and current velocities must be fulfilled. By calculating the dynamic limitations in each control cycle, the steering limit for the whole wheel base within the current control cycle can be found. With use of such wheel base limit, followable and coordinated wheel trajectories can be generated online. This thesis includes the construction of a dynamic model for inclusion of the steering dynamic limitations affecting the performance the most, the construction of the online trajectory generation idea, as well as implementation and validation on the real target wheeled mobile robot platform

    Collaborative Trolley Transportation System with Autonomous Nonholonomic Robots

    Full text link
    Cooperative object transportation using multiple robots has been intensively studied in the control and robotics literature, but most approaches are either only applicable to omnidirectional robots or lack a complete navigation and decision-making framework that operates in real time. This paper presents an autonomous nonholonomic multi-robot system and an end-to-end hierarchical autonomy framework for collaborative luggage trolley transportation. This framework finds kinematic-feasible paths, computes online motion plans, and provides feedback that enables the multi-robot system to handle long lines of luggage trolleys and navigate obstacles and pedestrians while dealing with multiple inherently complex and coupled constraints. We demonstrate the designed collaborative trolley transportation system through practical transportation tasks, and the experiment results reveal their effectiveness and reliability in complex and dynamic environments

    Nonlinear Model Predictive Control for the Stabilization of a Wheeled Unmanned Aerial Vehicle on a Pipe

    Get PDF
    This letter addresses the task of stabilizing a wheeled unmanned aerial vehicle on a pipe, which is an emerging applica- tion in oil and gas facilities for nondestructive measurements. After the derivation of the dynamic model of the system, a discrete-time nonlinear model predictive controller is designed over a finite horizon. The analysis of the asymptotic stability of the designed controller is carried out. Numerical tests show the performance and the robustness of the proposed solution

    Zbornik saĆŸetaka

    Get PDF

    Trajectory planning of single and dual-arm robots for time-optimal handling of liquids and objects

    Get PDF
    This Thesis studies the optimal control problem of single-arm and dual-arm serial robots to achieve the time-optimal handling of liquids and objects. The first topic deals with the planning of time-optimal anti-sloshing trajectories of an industrial robot carrying a cylindrical container filled with a liquid, considering 1-dimensional and 2-dimensional planar motions. A technique for the estimation of the sloshing height is presented, together with its extension to 3-dimensional motions. An experimental validation campaign is provided and discussed to assess the thoroughness of such a technique. As far as anti-sloshing trajectories are concerned, 2-dimensional paths are considered and, for each one of them, three constrained optimizations with different values of the sloshing-height thresholds are solved. Experimental results are presented to compare optimized and non-optimized motions. The second part focuses on the time-optimal trajectory planning for dual-arm object handling, employing two collaborative robots (cobots) and adopting an admittance-control strategy. The chosen manipulation approach, known as cooperative grasping, is based on unilateral contact between the cobots and the object, and it may lead to slipping during motion if an internal prestress along the contact-normal direction is not prescribed. Thus, a virtual penetration is considered, aimed at generating the necessary internal prestress. The stability of cooperative grasping is ensured as long as the exerted forces on the object remain inside the static-friction cone. Constrained-optimization problems are solved for 3-dimensional paths: the virtual penetration is chosen among the control inputs of the problem and friction-cone conditions are treated as inequality constraints. Also in this case experiments are presented in order to prove evidence of the firm handling of the object, even for fast motions

    Research on a semiautonomous mobile robot for loosely structured environments focused on transporting mail trolleys

    Get PDF
    In this thesis is presented a novel approach to model, control, and planning the motion of a nonholonomic wheeled mobile robot that applies stable pushes and pulls to a nonholonomic cart (York mail trolley) in a loosely structured environment. The method is based on grasping and ungrasping the nonholonomic cart, as a result, the robot changes its kinematics properties. In consequence, two robot configurations are produced by the task of grasping and ungrasping the load, they are: the single-robot configuration and the robot-trolley configuration. Furthermore, in order to comply with the general planar motion law of rigid bodies and the kinematic constraints imposed by the robot wheels for each configuration, the robot has been provided with two motorized steerable wheels in order to have a flexible platform able to adapt to these restrictions. [Continues.

    The Mechanics and Control of Undulatory Robotic Locomotion

    Get PDF
    In this dissertation, we examine a formulation of problems of undulatory robotic locomotion within the context of mechanical systems with nonholonomic constraints and symmetries. Using tools from geometric mechanics, we study the underlying structure found in general problems of locomotion. In doing so, we decompose locomotion into two basic components: internal shape changes and net changes in position and orientation. This decomposition has a natural mathematical interpretation in which the relationship between shape changes and locomotion can be described using a connection on a trivial principal fiber bundle. We begin by reviewing the processes of Lagrangian reduction and reconstruction for unconstrained mechanical systems with Lie group symmetries, and present new formulations of this process which are easily adapted to accommodate external constraints. Additionally, important physical quantities such as the mechanical connection and reduced mass-inertia matrix can be trivially determined using this formulation. The presence of symmetries then allows us to reduce the necessary calculations to simple matrix manipulations. The addition of constraints significantly complicates the reduction process; however, we show that for invariant constraints, a meaningful connection can be synthesized by defining a generalized momentum representing the momentum of the system in directions allowed by the constraints. We then prove that the generalized momentum and its governing equation possess certain invariances which allows for a reduction process similar to that found in the unconstrained case. The form of the reduced equations highlights the synthesized connection and the matrix quantities used to calculate these equations. The use of connections naturally leads to methods for testing controllability and aids in developing intuition regarding the generation of various locomotive gaits. We present accessibility and controllability tests based on taking derivatives of the connection, and relate these tests to taking Lie brackets of the input vector fields. The theory is illustrated using several examples, in particular the examples of the snakeboard and Hirose snake robot. We interpret each of these examples in light of the theory developed in this thesis, and examine the generation of locomotive gaits using sinusoidal inputs and their relationship to the controllability tests based on Lie brackets

    EGOR: design, development, implementation an entry in the 1994 AAAI robot competition

    Get PDF
    Journal ArticleEGOR, an entry in the 1994 AAAI Robot Competition, was built by ate am from the Department of Computer Science at the University of Utah. The constraints imposed by the competition rules, and by cost and time, led to the development of a system composed of off-the- shelf parts based on a mobile base built by Transitions Research Corporation and an Intel 486DX33-based laptop computer. The work included design, subsystem part procurement, fabrication, software development, testing, and system evaluation
    • 

    corecore