69 research outputs found

    A technique for lossy compression of error-diffused halftones

    Get PDF
    Centre for Multimedia Signal Processing, Department of Electronic and Information EngineeringRefereed conference paper2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Improved methods and system for watermarking halftone images

    Get PDF
    Watermarking is becoming increasingly important for content control and authentication. Watermarking seamlessly embeds data in media that provide additional information about that media. Unfortunately, watermarking schemes that have been developed for continuous tone images cannot be directly applied to halftone images. Many of the existing watermarking methods require characteristics that are implicit in continuous tone images, but are absent from halftone images. With this in mind, it seems reasonable to develop watermarking techniques specific to halftones that are equipped to work in the binary image domain. In this thesis, existing techniques for halftone watermarking are reviewed and improvements are developed to increase performance and overcome their limitations. Post-halftone watermarking methods work on existing halftones. Data Hiding Cell Parity (DHCP) embeds data in the parity domain instead of individual pixels. Data Hiding Mask Toggling (DHMT) works by encoding two bits in the 2x2 neighborhood of a pseudorandom location. Dispersed Pseudorandom Generator (DPRG), on the other hand, is a preprocessing step that takes place before image halftoning. DPRG disperses the watermark embedding locations to achieve better visual results. Using the Modified Peak Signal-to-Noise Ratio (MPSNR) metric, the proposed techniques outperform existing methods by up to 5-20%, depending on the image type and method considered. Field programmable gate arrays (FPGAs) are ideal for solutions that require the flexibility of software, while retaining the performance of hardware. Using VHDL, an FPGA based halftone watermarking engine was designed and implemented for the Xilinx Virtex XCV300. This system was designed for watermarking pre-existing halftones and halftones obtained from grayscale images. This design utilizes 99% of the available FPGA resources and runs at 33 MHz. Such a design could be applied to a scanner or printer at the hardware level without adversely affecting performance

    Media processor implementations of image rendering algorithms

    Get PDF
    Demands for fast execution of image processing are a driving force for today\u27s computing market. Many image processing applications require intense numeric calculations to be done on large sets of data with minimal overhead time. To meet this challenge, several approaches have been used. Custom-designed hardware devices are very fast implementations used in many systems today. However, these devices are very expensive and inflexible. General purpose computers with enhanced multimedia instructions offer much greater flexibility but process data at a much slower rate than the custom-hardware devices. Digital signal processors (DSP\u27s) and media processors, such as the MAP-CA created by Equator Technologies, Inc., may be an efficient alternative that provides a low-cost combination of speed and flexibility. Today, DSP\u27s and media processors are commonly used in image and video encoding and decoding, including JPEG and MPEG processing techniques. Little work has been done to determine how well these processors can perform other image process ing techniques, specifically image rendering for printing. This project explores various image rendering algorithms and the performance achieved by running them on a me dia processor to determine if this type of processor is a viable competitor in the image rendering domain. Performance measurements obtained when implementing rendering algorithms on the MAP-CA show that a 4.1 speedup can be achieved with neighborhood-type processes, while point-type processes achieve an average speedup of 21.7 as compared to general purpose processor implementations

    QR-RLS algorithm for error diffusion of color images

    Get PDF
    Printing color images on color printers and displaying them on computer monitors requires a significant reduction of physically distinct colors, which causes degradation in image quality. An efficient method to improve the display quality of a quantized image is error diffusion, which works by distributing the previous quantization errors to neighboring pixels, exploiting the eye's averaging of colors in the neighborhood of the point of interest. This creates the illusion of more colors. A new error diffusion method is presented in which the adaptive recursive least-squares (RLS) algorithm is used. This algorithm provides local optimization of the error diffusion filter along with smoothing of the filter coefficients in a neighborhood. To improve the performance, a diagonal scan is used in processing the image, (C) 2000 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(00)00611-5]

    Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    Get PDF
    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so that the combination or mixture of inks results in specific colour or spectra requires a spectral reflectance printer model that estimates reflectance spectra from nominal dot coverage. The printer models have one of the key roles in accurate communication of colour to the printed media. Accordingly, this has been one of the most active research areas in printing. The research direction was toward improvement of the model accuracy, model simplicity and toward minimal resources used by the model in terms of computational power and usage of material. The contribution of the work included in the thesis is also directed toward improvement of the printer models but for the multichannel printing. The thesis is focused primarily on improving existing spectral printer models and developing a new model. In addition, the aim was to develop and implement a multichannel halftoning method which should provide with high image quality. Therefore, the research goals of the thesis were: maximal accuracy of printer models, optimal resource usage and maximal image quality of halftoning and whole spectral reproduction system. Maximal colour accuracy of a model but with the least resources used is achieved by optimizing printer model calibration process. First, estimation of the physical and optical dot gain is performed with newly proposed method and model. Second, a custom training target is estimated using the proposed new method. These two proposed methods and one proposed model were at the same time the means of optimal resource usage, both in computational time and material. The third goal was satisfied with newly proposed halftoning method for multichannel printing. This method also satisfies the goal of optimal computational time but with maintaining high image quality. When applied in spectral reproduction workflow, this halftoning reduces noise induced in an inversion of the printer model. Finally, a case study was conducted on the practical use of multichannel printers and spectral reproduction workflow. In addition to a gamut comparison in colour space, it is shown that otherwise limited reach of spectral printing could potentially be used to simulate spectra and colour of textile fabrics
    corecore