8 research outputs found

    Disaster debris estimation using high-resolution polarimetric stereo-SAR

    Get PDF
    AbstractThis paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs

    Electromagnetic modeling for SAR polarimetry and interferometry

    Get PDF
    Investigation of the globe remotely from hundreds of kilometers altitude, and fast growing of environmental and civil problems, triggered the necessity of development of new and more advanced techniques. Electromagnetic modeling of polarimetry and interferometry has always been a key driver in remote sensing research, ever since of the First pioneering sensors were launched. Polarimetric and interferometric SAR (Synthetic Aperture Radar) surveillance and mapping of the Earth surface has been attracting lots of interest since 1970s. This thesis covers two SAR's main techniques: (1) space-borne Interferometric Synthetic Aperture Radar (InSAR), which has been used to measure the Earth's surface deformation widely, and (2) SAR Polarimetry, which has been used to retrieve soil and vegetation physical parameters in wide areas. Time-series InSAR methodologies such as PSI (Permanent Scatterer Interferometry) are designed to estimate the temporal characteristics of the Earth's deformation rates from multiple InSAR images acquired over time. These techniques also enable us to overcome the limitations that conventional InSAR suffer, with a very high accuracy and precision. In this thesis, InSAR time-series analysis and modeling basis, as well as a case study in the Campania region (Italy), have been addressed. The Campania region is characterized by intense urbanization, active volcanoes, complicated fault systems, landslides, subsidence, and hydrological instability; therefore, the stability of public transportation structures is highly concerned. Here Differential Interferometric Synthetic Aperture Radar (DInSAR), and PSI techniques have been applied to a stack of 25 X-band radar images of Cosmo-SkyMed (CSK) satellites collected over an area in Campania (Italy), in order to monitor the railways' stability. The study area was already under investigation with older, low-resolution sensors like ERS1&2 and ENVISAT-ASAR before, but the number of obtained persistent scatterers (PSs) was too limited to get useful results. With regard to SAR polarimetry, in this thesis a fully polarimetirc SAR simulator has been presented, which is based on the use of sound direct electromagnetic models and it is able to provide as output the simulated raw data of all the three polarization channels in such a way as to obtain the correct covariance or coherence matrixes on the final focused polarimetic radar images. A fast Fourier-domain approach is used for the generation of raw signals. Presentation of theory is supplemented by meaningful experimental results, including a comparison of simulations with real polarimetric scattering data

    Signal theory and processing for burst-mode and ScanSAR interferometry

    Get PDF

    Radar Interferometry for Monitoring Crustal Deformation. Geodetic Applications in Greece

    Get PDF
    The chapatti and breadmaking quality of nine (eight Indian and one Australian) wheat (Triticum aestivum L.) cultivars was compared. The extension of a chapatti strip measured with a Kieffer dough extensibility rig correlated with chapatti scores for overall quality (r = 0.84), pliability (r = 0.91), hand feel (r = 0.72), chapatti eating quality (r = 0.68), and taste (r = 0.80). Overall chapatti quality also correlated with the resistance to extension of a chapatti strip (r = 0.68) when tested for uniaxial extension with a texture analyzer. The texture analyzer provided objectivity in the scoring of chapatti quality. The high-molecular-weight glutenin subunit protein composition assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis did not correlate with the overall chapatti score. A negative correlation was found between chapatti and bread scores (r = 0.77). The different requirements for chapatti and bread quality complicate the breeding of new wheat varieties and the exchange of germplasm between regions producing wheat for chapatti and those supplying bread producers

    A Priori Knowledge-Based Post-Doppler STAP for Traffic Monitoring with Airborne Radar

    Get PDF
    Die Verkehrsüberwachung gewinnt aufgrund des weltweiten Anstiegs der Verkehrsteilnehmer immer mehr an Bedeutung. Sicherer und effizierter Straßenverkehr erfordert detaillierte Verkehrsinformationen. Häufig sind diese lediglich stationär, räumlich stark begrenzt und meist nur auf Hauptverkehrsstraßen verfügbar. In dieser Hinsicht ist ein Ausfall des Telekommunikationsnetzes, beispielsweise im Falle einer Katastrophe, und der damit einhergehende Informationsverlust als kritisch einzustufen. Flugzeuggetragene Radarsysteme mit synthetischer Apertur (eng. Synthetic Aperture Radar - SAR) können für dieses Szenario eine Lösung darstellen, da sie großflächig hochauflösende Bilder generieren können, unabhängig von Tageslicht und Witterungsbedingungen. Sie ermöglichen aufgrund dieser Charakteristik die Detektion von Bewegtzielen am Boden (eng. ground moving target indication – GMTI). Moderne GMTI-Algorithmen und -Systeme, die prinzipiell für die Verkehrsüberwachung verwendbar sind, wurden in der Literatur bereits diskutiert. Allerdings ist die Robustheit dieser Systeme oft mit hohen Kosten, hoher Hardwarekomplexität und hohem Rechenaufwand verbunden. Diese Dissertation stellt einen neuartigen GMTI-Prozessor vor, der auf dem Radar-Mehrkanalverfahren post-Doppler space-time adaptive processing (PD STAP) basiert. Durch die Überlagerung einer Straßenkarte mit einem digitalen Höhenmodell ist es mithilfe des PD STAP möglich, Falschdetektionen zu erkennen und auszuschließen sowie die detektierten Fahrzeuge ihren korrekten Straßenpositionen zu zuordnen. Die präzisen Schätzungen von Position, Geschwindigkeit und Bewegungsrichtung der Fahrzeuge können mit vergleichsweise geringerer Hardware-Komplexität zu niedrigeren Kosten durchgeführt werden. Ferner wird im Rahmen dieser Arbeit ein effizienter Datenkalibrierungsalgorithmus erläutert, der das Ungleichgewicht zwischen den Empfangskanälen sowie die Variation des Dopplerschwerpunkts über Entfernung und Azimut korrigiert und so das Messergebnis verbessert. Darüber hinaus werden neue und automatisierte Strategien zur Erhebung von Trainingsdaten vorgestellt, die für die Schätzung der Clutter-Kovarianzmatrix wegen ihres direkten Einflusses auf die Clutter-Unterdrückung und Zieldetektion essentiell für PD STAP sind. Der neuartige PD STAP Prozessor verfügt über drei verschiedene Betriebsarten, die für militärische und zivile Anwendungen geeignet sind, darunter ein schneller Verarbeitungsalgorithmus der das Potential für eine zukünftige Echtzeit-Verkehrsüberwachung hat. Alle Betriebsarten wurden erfolgreich mit Radar-Mehrkanaldaten des flugzeuggetragenen F-SAR-Radarsensors des DLR getestet

    Satellite measurement of ocean turbulence

    No full text
    Turbulence and mixing in the surface layer of the ocean is a significant element in the combined ocean-atmosphere system, and plays a considerable role in the transfer of heat, gas and momentum across the air-sea boundary. Furthermore, improving knowledge of the evolution of energy within the ocean system, both globally and locally, holds importance for improving our understanding of the dynamics of the ocean at large- and small-scales. As such, insight into turbulence and turbulent flows at the ocean surface is becoming increasingly important for its role in ocean-atmosphere exchange and, from a wider perspective, climate change.A research project was initiated to understand the role that spacecraft remote-sensing may play in improving observation of “turbulence” (in a broad sense) in the ocean, and for identifying how steps towards such observation may be made. An initial, exploratory study identified the potential benefit of Synthetic Aperture Radar in “bridging the gap” between in-situ and remote observations o

    Evaluation of digital elevation model generated by an airborne interferometric SAR (Pi-SAR2)

    No full text
    corecore