1,806 research outputs found

    Automatic hidden bypasses in software-defined networks

    Get PDF
    As global internet traffic continues to increase, network operators face challenges on how to efficiently manage transmission in their networks. Even though attempts are underway to make optical networks automatic, the majority of actions related to traffic engineering are still performed manually by the administrators. In this paper we propose an Automatic Hidden Bypasses approach to enhance resource utilization in optical networks. Our solution uses the software-defined networking concept to automatically create or remove hidden bypasses which are not visible at the network layer. The mechanism increases throughput and reduces transmission delays

    Autonomous flight and remote site landing guidance research for helicopters

    Get PDF
    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Research challenges on energy-efficient networking design

    Get PDF
    The networking research community has started looking into key questions on energy efficiency of communication networks. The European Commission activated under the FP7 the TREND Network of Excellence with the goal of establishing the integration of the EU research community in green networking with a long perspective to consolidate the European leadership in the field. TREND integrates the activities of major European players in networking, including manufacturers, operators, research centers, to quantitatively assess the energy demand of current and future telecom infrastructures, and to design energy-efficient, scalable and sustainable future networks. This paper describes the main results of the TREND research community and concludes with a roadmap describing the next steps for standardization, regulation agencies and research in both academia and industry.The research leading to these results has received funding from the EU 7th Framework Programme (FP7/2007–2013) under Grant Agreement No. 257740 (NoE TREND)

    The Symbiosis of Distributed Ledger and Machine Learning as a Relevance for Autonomy in the Internet of Things

    Get PDF
    The Internet of Things (IoT) describes the fusion of the physical and digital world which enables assets on the edge to send data to a platform where it gets analyzed. Defined actions are then triggered to influence cross-functional edge activities. Furthermore, on the platform tier functionalities and relations need to be identified and implemented to realize assets operating autonomously and ubiquitously. The exploration of this paper results in the identification of autonomous characteristics and shows functional components to implement autonomous assets on the edge. Distributed Ledger Technology (DLT) and its fusion with Machine Learning (ML) as an area of Artificial Intelligence (AI) provides an integral part to realize the described outline. Thus, the recognition of DLT’s and ML’s usage in the IoT and the evaluation of the relevance as well as the synergies build the main focus of this paper
    corecore