456 research outputs found

    Ocean surface currents derived from Sentinel-1 SAR Doppler shift measurements

    Get PDF
    Reliable information about ocean surface currents is crucial for operational oceanography, regulating weather development, and climate research (e.g., UN SDG 13). Upper-ocean currents are also key for monitoring life below water, including conservation of marine biodiversity at every trophic level (e.g., UN SDG 14). Locating upper ocean currents “with the right strength at the right place and time” is moreover critically needed to support the maritime transport sector, renewable marine energy, and maritime safety operations as well as for monitoring and tracking of marine pollution. In spite of this, upper ocean currents and their variability are mostly indirectly estimated and often without quantitative knowledge of uncertainties. In this thesis, Sentinel-1 Synthetic Aperture Radar (SAR) based Doppler frequency shift observations are examined for the retrievals of ocean surface current velocity in the radar line-of-sight direction. In the first study (Paper 1), Sentinel-1 A/B Interferometric Wide (IW) data acquired along the northern part of the Norwegian coastal zone from October-November 2017 at a spatial resolution of 1.5 km are compared with independent in-situ data, ocean model fields, and coastal High-Frequency Radar observations. Although only a limited dataset was available, the findings and results reveal that the strength of the meandering Norwegian Coastal Current derived from the SAR Doppler frequency shift observations are consistent with observations. However, limitations are encountered due to insufficient calibration and lack of ability to properly partition the geophysical signals into wave and current contributions. A novel approach for calibration of the attitude contribution to the Sentinel-1B Wave Mode (WV) Doppler frequency shift emerged for a test period in December 2017 - January 2018. Building on this calibrated dataset, an empirical model function (CDOP3S) for prediction of the sea state-induced contribution to the Doppler shift observations is developed for the global open ocean in Paper 2. The assessment against collocated surface drifter data are promising and suggest that the Sentinel-1B WV acquisitions can be used to study the equatorial ocean surface currents at a monthly timescale with a 20 km spatial resolution. The calibrated dataset combined with the new geophysical model function developed in Paper 2 also allowed for the study (Paper 3) of ocean surface current retrievals from the high-resolution Sentinel-1B IW swath data acquired along the coastal zone on northern Norway. In this case, the geophysical model function had to be trained and adjusted for fetch limited coastal sea state conditions. The results demonstrate that the Sentinel-1B SAR-derived ocean surface currents significantly improved, compared to the findings reported in Paper 1. Although the thesis builds on a limited period of observations, constrained by the availability of experimental attitude calibration, the results are all in all promising. Reprocessing of the full Sentinel-1 A/B SAR Doppler shift dataset using the novel attitude bias correction is therefore strongly recommended for further improvement of the empirical model function. Regular use of the Sentinel-1 A/B SAR for ocean surface current monitoring would thus be feasible, leading to advances in studies of upper ocean dynamics in support to the Copernicus Marine Environment Monitoring Service (CMEMS) program and the United Nations (UN) Decade of Ocean Sciences.Doktorgradsavhandlin

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation

    Get PDF
    The present paper proposes a method for the evaluation of soil evaporation, using soil moisture estimations based on radar satellite measurements. We present firstly an approach for the estimation and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of moisture variability related to rainfall events, over areas in the "non-irrigated olive tree" class of land use. The developed approach is based on a simple linear relationship between soil moisture and the backscattered radar signal normalised at a reference incidence angle. The second process is proposed over wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, roughness), during the 2008–2009 vegetation cycle. Finally, a semi-empirical approach is proposed in order to relate surface moisture to the difference between soil evaporation and the climate demand, as defined by the potential evaporation. Mapping of the soil evaporation is proposed

    Wind speed retrieval from the Gaofen-3 synthetic aperture radar for VV- and HH-polarization using a re-tuned algorithm

    Get PDF
    In this study, a re-tuned algorithm based on the geophysical model function (GMF) C-SARMOD2 is proposed to retrieve wind speed from Synthetic Aperture Radar (SAR) imagery collected by the Chinese C-band Gaofen-3 (GF-3) SAR. More than 10,000 Vertical-Vertical (VV) and Horizontal-Horizontal (HH) polarization GF-3 images acquired in quad-polarization stripmap (QPS) and wave (WV) modes have been collected during the last three years, in which wind patterns are observed over open seas with incidence angles ranging from 18° to 52°. These images, collocated with wind vectors from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis at 0.125° resolution, are used to re-tune the C-SARMOD2 algorithm to specialize it for the GF-3 SAR (CSARMOD-GF). In particular, the CSARMOD-GF performs differently from the C-SARMOD2 at low-to-moderate incidence angles smaller than about 34°. Comparisons with wind speed data from the Advanced Scatterometer (ASCAT), Chinese Haiyang-2B (HY-2B) and buoys from the National Data Buoy Center (NDBC) show that the root-mean-square error (RMSE) of the retrieved wind speed is approximately 1.8 m/s. Additionally, the CSARMOD-GF algorithm outperforms three state-of-the-art methods – C-SARMOD, C-SARMOD2, and CMOD7 – that, when applied to GF-3 SAR imagery, generating a RMSE of approximately 2.0–2.4 m/s

    SAR-based Wind Resource Statistics in the Baltic Sea

    Get PDF
    Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR) images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms
    • 

    corecore