2,163 research outputs found

    Transparent decision support for mechanical ventilation using visualization of clinical preferences

    Get PDF
    BACKGROUND: Systems aiding in selecting the correct settings for mechanical ventilation should visualize patient information at an appropriate level of complexity, so as to reduce information overload and to make reasoning behind advice transparent. Metaphor graphics have been applied to this effect, but these have largely been used to display diagnostic and physiologic information, rather than the clinical decision at hand. This paper describes how the conflicting goals of mechanical ventilation can be visualized and applied in making decisions. Data from previous studies are analyzed to assess whether visual patterns exist which may be of use to the clinical decision maker. MATERIALS AND METHODS: The structure and screen visualizations of a commercial clinical decision support system (CDSS) are described, including the visualization of the conflicting goals of mechanical ventilation represented as a hexagon. Retrospective analysis is performed on 95 patients from 2 previous clinical studies applying the CDSS, to identify repeated patterns of hexagon symbols. RESULTS: Visual patterns were identified describing optimal ventilation, over and under ventilation and pressure support, and over oxygenation, with these patterns identified for both control and support modes of mechanical ventilation. Numerous clinical examples are presented for these patterns illustrating their potential interpretation at the bedside. CONCLUSIONS: Visual patterns can be identified which describe the trade-offs required in mechanical ventilation. These may have potential to reduce information overload and help in simple and rapid identification of sub-optimal settings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12938-021-00974-5

    Design and optimization of medical information services for decision support

    Get PDF

    Rapid Response Teams versus Critical Care Outreach Teams: Unplanned Escalations in Care and Associated Outcomes

    Get PDF
    The incidence of unplanned escalations during hospitalization is undocumented, but estimates may be as high as 1.2 million occurrences per year in the United States. Rapid Response Teams (RRT) were developed for the early recognition and treatment of deteriorating patients to deliver time-sensitive interventions, but evidence related to optimal activation criteria and structure is limited. The purpose of this study is to determine if an Early Warning Score-based Critical Care Outreach (CCO) model is related to the frequency of unplanned intra-hospital escalations in care compared to a RRT system based on staff nurse identification of vital sign derangements and physical assessments. The RRT model, in which staff nurses identified vital sign derangements to active the system, was compared with the addition of a CCO model, in which rapid response nurses activated the system based on Early Warning Score line graphs of patient condition over time. Logistic regressions were used to examine retrospective data from administrative datasets at a 237-bed community non-teaching hospital during two periods: 1) baseline period, RRT model (n=5,875) (Phase 1: October 1, 2010 – March 31, 2011), and; 2) intervention period, RRT/CCO model (n=6,273). (Phase 2: October 1, 2011 – March 31, 2012). The strongest predictor of unplanned escalations to the Intensive Care Unit was the type of rapid response system model. Unplanned ICU transfers were 1.4 times more likely to occur during the Phase 1 RRT period. In contrast, the type of rapid response model was not a significant predictor when all unplanned escalations (any type) were grouped together (medical-surgical-to-intermediate, medical-surgical-to-ICU and intermediate-to-ICU). This is the first study to report a relationship between unplanned escalations and different rapid response models. Based on the findings of fewer unplanned ICU transfers in the setting of a CCO model, health services researchers and clinicians should consider using automated Early Warning score graphs for hospital-wide surveillance of patient condition as a safety strategy

    Electroencephalogram data platform for application of reduction methods

    Get PDF
    Long-term electroencephalogram (EEG) monitoring (≥24-h) is a resourceful tool for properly diagnosis sparse life-threatening events like non-convulsive seizures and status epilepticus in Intensive Care Unit (ICU) inpatients. Such EEG data requires objective methods for data reduction, transmission and analysis. This work aims to assess specificity and sensibility of HaEEG and aEEG methods in combination with conventional multichannel EEG when achieving seizure detection. A database architecture was designed to handle the interoperability, processing, and analysis of EEG data. Using data from CHB-MIT public EEG database, the reduced signal was obtained by EEG envelope segmentation, with 10 and 90 percentiles obtained for each segment. The use of asymmetrical filtering (2-15 Hz) and overall clinical band (1-70 Hz) was compared. The upper and lower margins of compressed segments were used to classify ictal and non-ictal epochs. Such classification was compared with the corresponding specialist seizure annotation for each patient. The difference between medians of instantaneous frequencies of ictal and non-ictal periods were assessed using Wilcoxon Rank Sum Test, which was significant for signals filtered from 2 to 15 Hz (p = 0.0055) but not for signals filtered from 1 to 70 Hz (p = 0.1816).O eletroencefalograma (EEG) de longa duração (≥24-h) em monitoramento contínuo é diferencial no diagnóstico e classificação de eventos epileptiformes, como crises não convulsivas e status epilepticus, em pacientes de Unidades de Tratamento Intensivo (UTI). Este exame requer métodos objetivos de análise, redução e transmissão de dados. O objetivo desse trabalho é avaliar a especificidade e a sensibilidade dos métodos HaEEG e aEEG em combinação com EEG multicanal convencional na detecção de eventos epileptiformes. Uma arquitetura de integração de dados foi projetada para gerir o armazenamento, processamento e análise de dados de EEG. Foram utilizados dados do banco de dados de EEG público do CHB-MIT. O sinal reduzido foi obtido pela segmentação do envelope do EEG, com percentis 10 e 90 obtidos para cada segmento. A aplicação do filtro assimétrico (2-15 Hz) e em bandas clínicas (1-70 Hz) foi comparada. Os limiares superiores e inferiores dos segmentos do aEEG e HaEEG foram usados para classificar épocas ictais e não ictais. A classificação foi comparada com as anotações feitas por um especialista para cada paciente. As medianas das frequências instantâneas para períodos ictais e não ictais foram analisadas com Wilcoxon Rank Sum Test com significância para filtragem assimétrica (p = 0,0055), mas não nas bandas clínicas (p = 0,1816)

    A dynamic visual analytics framework for complex temporal environments

    Get PDF
    Introduction: Data streams are produced by sensors that sample an external system at a periodic interval. As the cost of developing sensors continues to fall, an increasing number of data stream acquisition systems have been deployed to take advantage of the volume and velocity of data streams. An overabundance of information in complex environments have been attributed to information overload, a state of exposure to overwhelming and excessive information. The use of visual analytics provides leverage over potential information overload challenges. Apart from automated online analysis, interactive visual tools provide significant leverage for human-driven trend analysis and pattern recognition. To facilitate analysis and knowledge discovery in the space of multidimensional big data, research is warranted for an online visual analytic framework that supports human-driven exploration and consumption of complex data streams. Method: A novel framework was developed called the temporal Tri-event parameter based Dynamic Visual Analytics (TDVA). The TDVA framework was instantiated in two case studies, namely, a case study involving a hypothesis generation scenario, and a second case study involving a cohort-based hypothesis testing scenario. Two evaluations were conducted for each case study involving expert participants. This framework is demonstrated in a neonatal intensive care unit case study. The hypothesis generation phase of the pipeline is conducted through a multidimensional and in-depth one subject study using PhysioEx, a novel visual analytic tool for physiologic data stream analysis. The cohort-based hypothesis testing component of the analytic pipeline is validated through CoRAD, a visual analytic tool for performing case-controlled studies. Results: The results of both evaluations show improved task performance, and subjective satisfaction with the use of PhysioEx and CoRAD. Results from the evaluation of PhysioEx reveals insight about current limitations for supporting single subject studies in complex environments, and areas for future research in that space. Results from CoRAD also support the need for additional research to explore complex multi-dimensional patterns across multiple observations. From an information systems approach, the efficacy and feasibility of the TDVA framework is demonstrated by the instantiation and evaluation of PhysioEx and CoRAD. Conclusion: This research, introduces the TDVA framework and provides results to validate the deployment of online dynamic visual analytics in complex environments. The TDVA framework was instantiated in two case studies derived from an environment where dynamic and complex data streams were available. The first instantiation enabled the end-user to rapidly extract information from complex data streams to conduct in-depth analysis. The second allowed the end-user to test emerging patterns across multiple observations. To both ends, this thesis provides knowledge that can be used to improve the visual analytic pipeline in dynamic and complex environments

    Secondary Analysis of Electronic Health Records

    Get PDF
    Health Informatics; Ethics; Data Mining and Knowledge Discovery; Statistics for Life Sciences, Medicine, Health Science
    • …
    corecore