6,188 research outputs found

    Data Transparent and Polarization Insensitive All-Optical Switch based on Fibers with Enhanced Nonlinearity

    Get PDF
    We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion

    Energy savings using an adaptive base station-to-relay station switching paradigm

    Get PDF
    Applying a Base Station (BS) sleep approach during low traffic periods has recently been advocated as a strategy for reducing energy consumption in cellular networks. The complete switching off of certain BS however, can lead to coverage holes and severe performance degradation in terms of off-cell user throughput, greater transmit power dissipation in both the up and downlinks, and more complex interference management. This paper presents a novel cellular network energy saving model in which certain BS rather being turned off are switched to Relay Station (RS) mode during low traffic periods. The switched RS and other shared RS deployed at the cross border of each cell are responsible for upholding the same quality of service (QoS) provision as when all BS are active. A centralised adaptive switching threshold algorithm is also introduced to undertake the switching decision, instead of using a fixed threshold. Simulation results confirm the new BS-RS Switching model using an adaptive threshold can reduce network energy consumption by more than half, as well as improving off-cell users’ throughput

    Node design in optical packet switched networks

    Get PDF
    corecore