2,069 research outputs found

    Experimental evaluation of UWB indoor positioning for indoor track cycling

    Get PDF
    Accurate radio frequency (RF)-based indoor localization systems are more and more applied during sports. The most accurate RF-based localization systems use ultra-wideband (UWB) technology; this is why this technology is the most prevalent. UWB positioning systems allow for an in-depth analysis of the performance of athletes during training and competition. There is no research available that investigates the feasibility of UWB technology for indoor track cycling. In this paper, we investigate the optimal position to mount the UWB hardware for that specific use case. Different positions on the bicycle and cyclist were evaluated based on accuracy, received power level, line-of-sight, maximum communication range, and comfort. Next to this, the energy consumption of our UWB system was evaluated. We found that the optimal hardware position was the lower back, with a median ranging error of 22 cm (infrastructure hardware placed at 2.3 m). The energy consumption of our UWB system is also taken into account. Applied to our setup with the hardware mounted at the lower back, the maximum communication range varies between 32.6 m and 43.8 m. This shows that UWB localization systems are suitable for indoor positioning of track cyclists

    High precision real-time location estimates in a real-life barn environment using a commercial ultra wideband chip

    Get PDF
    Structural changes lead to an increase in the number of dairy cows and dry sows kept per group. This has consequences in how easily a farmer can supervise his herd and may be detrimental to animal welfare, specifically regarding social relations, time budget and area of residence. An automated tracking system can support the farmer in his management activities and can provide the foundation for a scientific assessment of the welfare consequences of large groups. In this study, a relatively simple and inexpensive real time location system (RTLS) was developed with the aim of achieving precise localization of several tags (animals) in real time and in a real barn environment. The RTLS was based on the ultra-wideband (UWB) technology provided by DecaWave and was adapted for a time difference of arrival (TDoA) procedure to estimate the tags’ positions. The RTLS can handle up to a hundred tags simultaneously using a Pure ALOHA random access method at 1-second intervals. The localization of the tags was estimated in 2D on a given fixed height using a constrained Gauss-Newton algorithm to increase accuracy and stability. The performance of the overall system was evaluated in two different dairy barns. To determine the precision of the system, static and dynamic positions measured at withers height of a cow (1.5 m) and closer to the ground mimicking a lying cow were compared with a reference system (theodolite). The 2D deviations between the systems were used as a measure of precision. In addition, the scalability in respect to the number of tags and the size of the observed area was examined in situations with ten tags and the situation with 100 tags was simulated with a ten-fold increase in sampling rate. According to the field test, the system as developed can be used for the individual localization of animals. At withers height, most of the measured locations deviated less than 0.5 m from the localizations as measured by the theodolite. At lower heights, and closer to the corners of the observed area, some localization estimates were somewhat larger. This was also the case close to large metal barn infrastructure. The measured collision rate of 11% for 100 tags was low. In spite of its low price, the system as a whole is therefore promising and ready for a next step, which should include the observation of large groups of real animals on working farms

    Massive MIMO-based Localization and Mapping Exploiting Phase Information of Multipath Components

    Get PDF
    In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.Comment: 14 pages (two columns), 13 figures. This work has been submitted to the IEEE Transaction on Wireless Communications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Multi Detector Fusion of Dynamic TOA Estimation using Kalman Filter

    Full text link
    In this paper, we propose fusion of dynamic TOA (time of arrival) from multiple non-coherent detectors like energy detectors operating at sub-Nyquist rate through Kalman filtering. We also show that by using multiple of these energy detectors, we can achieve the performance of a digital matched filter implementation in the AWGN (additive white Gaussian noise) setting. We derive analytical expression for number of energy detectors needed to achieve the matched filter performance. We demonstrate in simulation the validity of our analytical approach. Results indicate that number of energy detectors needed will be high at low SNRs and converge to a constant number as the SNR increases. We also study the performance of the strategy proposed using IEEE 802.15.4a CM1 channel model and show in simulation that two sub-Nyquist detectors are sufficient to match the performance of digital matched filter

    Evaluation and Comparison of Ultrasonic and UWB Technology for Indoor Localization in an Industrial Environment

    Get PDF
    Evaluations of different technologies and solutions for indoor localization exist but only a few are aimed at the industrial context. In this paper, we compare and analyze two prominent solutions based on Ultra Wide Band Radio (Pozyx) and Ultrasound (GoT), both installed in an industrial manufacturing laboratory. The comparison comprises a static and a dynamic case. The static case evaluates average localization errors over 90 s intervals for 100 ground-truth points at three different heights, corresponding to different relevant objects in an industrial environment: mobile robots, pallets, forklifts and worker helmets. The average error obtained across the laboratory is similar for both systems and is between 0.3 m and 0.6 m, with higher errors for low altitudes. The dynamic case is performed with a mobile robot travelling with an average speed of 0.5 m/s at a height of 0.3 m. In this case, low frequency error components are filtered out to focus the comparison on dynamic errors. Average dynamic errors are within 0.3–0.4 m for Pozyx and within 0.1–0.2 m for GoT. Results show an acceptable accuracy required for tracking people or objects and could serve as a guideline for the least achievable accuracy when applied for mobile robotics in conjunction with other elements of a robotic navigation stack
    • …
    corecore