2,077 research outputs found

    Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images

    Get PDF
    The purpose of this study was to evaluate a semi-automatic right ventricle segmentation method on short-axis cardiac cine MR images which segment all right ventricle contours in a cardiac phase using one seed contour. Twenty-eight consecutive short-axis, four-chamber, and tricuspid valve view cardiac cine MRI examinations of healthy volunteers were used. Two independent observers performed the manual and automatic segmentations of the right ventricles. Analyses were based on the ventricular volume and ejection fraction of the right heart chamber. Reproducibility of the manual and semi-automatic segmentations was assessed using intra- and inter-observer variability. Validity of the semi-automatic segmentations was analyzed with reference to the manual segmentations. The inter- and intra-observer variability of manual segmentations were between 0.8 and 3.2%. The semi-automatic segmentations were highly correlated with the manual segmentations (R2 0.79–0.98), with median difference of 0.9–4.8% and of 3.3% for volume and ejection fraction parameters, respectively. In comparison to the manual segmentation, the semi-automatic segmentation produced contours with median dice metrics of 0.95 and 0.87 and median Hausdorff distance of 5.05 and 7.35 mm for contours at end-diastolic and end-systolic phases, respectively. The inter- and intra-observer variability of the semi-automatic segmentations were lower than observed in the manual segmentations. Both manual and semi-automatic segmentations performed better at the end-diastolic phase than at the end-systolic phase. The investigated semi-automatic segmentation method managed to produce a valid and reproducible alternative to manual right ventricle segmentation

    GridNet with automatic shape prior registration for automatic MRI cardiac segmentation

    Full text link
    In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge. The novelty of our network comes with its embedded shape prior and its loss function tailored to the cardiac anatomy. Our model includes a cardiac centerof-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results). Those features are learned with a multi-resolution conv-deconv "grid" architecture which can be seen as an extension of the U-Net. Experimental results reveal that our method can segment the left and right ventricles as well as the myocardium from a 3D MRI cardiac volume in 0.4 second with an average Dice coefficient of 0.90 and an average Hausdorff distance of 10.4 mm.Comment: 8 pages, 1 tables, 2 figure

    Automatic segmentation of the left ventricle cavity and myocardium in MRI data

    Get PDF
    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method
    corecore