28,640 research outputs found

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    Some determinants of path generating functions

    Full text link
    We evaluate four families of determinants of matrices, where the entries are sums or differences of generating functions for paths consisting of up-steps, down-steps and level steps. By specialisation, these determinant evaluations have numerous corollaries. In particular, they cover numerous determinant evaluations of combinatorial numbers - most notably of Catalan, ballot, and of Motzkin numbers - that appeared previously in the literature.Comment: 35 pages, AmS-TeX; minor corrections; final version to appear in Adv. Appl. Mat

    Black hole determinants and quasinormal modes

    Get PDF
    We derive an expression for functional determinants in thermal spacetimes as a product over the corresponding quasinormal modes. As simple applications we give efficient computations of scalar determinants in thermal AdS, BTZ black hole and de Sitter spacetimes. We emphasize the conceptual utility of our formula for discussing `1/N' corrections to strongly coupled field theories via the holographic correspondence.Comment: 28 pages. v2: slightly improved exposition, references adde
    corecore