11 research outputs found

    Experimental evaluation of a MANET testbed in indoor stairs scenarios

    Get PDF
    In recent years, Mobile Ad hoc Networks (MANETs) are continuing to attract the attention for their potential use in several fields. Mobility and the absence of any fixed infrastructure make MANETs very attractive for mobility and rescue operations and time-critical applications. In this paper, we present the implementation and analysis of our implemented MANET testbed considering the Optimized Link State Routing (OLSR) protocol. We consider two models. One when all the nodes are static and another one when one node is moving. The mobile node moves toward the destination at a regular speed and when arrives at the corner of stairs is stops for about three seconds. In this work, we assess the performance of our MANET testbed in terms of throughput and packet loss. From our experiments, we found that the OLSR protocol has a good performance when nodes are in stationary state. However, when the node moves the throughput is decreased. We observed that the number of packet loss increases after 2-hops for static model and after 1-hop for moving model. But, when the node is moving, the packet loss for 2-hops to 4-hops is almost the same.Peer ReviewedPostprint (published version

    Routing in multi-hop Ad Hoc networks: an Experimental Approach

    Get PDF
    In this thesis we investigate the efficiency of routing protocols for Mobile Ad Hoc networks (MANETs) by adopting an experimental approach. MANET routing protocols have been mainly evaluated through simulations which often introduce simplifying assumptions (e.g., radio propagation model) and mask important real characteristics. To avoid these modeling approximations, it is necessary to complement simulation with experiments on real MANETs. This work provides a contribution in this direction reporting our experiences learned by these real measurements. By setting up MANET prototypes, firstly we investigate IEEE 802.11 behavior in single­hop MANETs, secondly we focus on an innovative analysis of routing protocols in multi­hop MANETs by varying scenarios. To the best of our knowledge, our medium­scale scenario composed of 23 nodes represents one of the largest MANET testbed. Our experimental results highlight that, in contrast with MANET community, by using proactive routing protocols the overall system gains in scalability, performance and efficiency. These results encourage us identifying in this last class Hazy Sighted Link State (HSLS) as a more suitable protocol. A further contribution of this thesis is hence to design, develop and test an enhanced version of HSLS, strengthened with a mechanism to guarantee the reliability of LSU packets without additional control overhead, and a module to support middleware-network interactions as proposed by the MobileMAN project (EUIST-FP5-FET-Open-IST-2001-38113)

    Evaluation of mesh routing protocols for wireless community networks

    Get PDF
    In recent years, we have witnessed the exponential growth of wireless community networks as a response to the clear necessity of Internet access for participation in society. For wireless mesh networks that can scale up to thousands of nodes, which are owned and managed in a decentralized way, it is imperative for their survival to provide the network with self-management mechanisms that reduce the requirements of human intervention and technological knowledge in the operation of a community network. In this paper, we focus on one important self-management mechanism, routing, and we study the scalability, performance, and stability of three proactive mesh routing protocols: BMX6, OLSR, and Babel. We study different metrics on an emulation framework and on the W-ILab.T testbed at iMinds, making the most of the two worlds. Emulation allows us to have more control over the topology and more systematically repeat the experiments, whereas a testbed provides a realistic wireless medium and more reliable measurements, especially in terms of interference and CPU consumption. Results show the relative merits, costs, and limitations of the three protocols.Peer ReviewedPostprint (author's final draft

    Routing Protocols for Meshed Communication, Networks Targeting Communication Quality of Service (QoS) in Rural Areas

    Get PDF
    Rural areas in Africa often have poor telecommunication infrastructure. Mobile phones, if available, are frequently unaffordable to most users. Wireless mesh networks (WMNs) offer an alternative possibility of low cost voice and data communications. The focus of this research is a laboratory study of WMNs that mimic conditions found in rural areas. This work investigates routing strategies for the Mesh Potato (MP). The MP is an effective alternative communication technology that has minimal configuration requirements, low cost of deployment, low power consumption and resilience that make it an attractive choice for rural areas. The MP runs a new mesh networking algorithm called the better approach to mobile ad hoc networking (B.A.T.M.A.N or Batman). This allows a WMN to be established in which users can use plain old telephones to talk to each other using Voice over IP (VoIP). Batman daemon (Batmand) is the implementation of Batman algorithm used by the MP. Batmand is a minimalistic routing protocol which performs well in laboratory experiments. The question raised is whether adding more service specific routing metrics improve the quality of service (QoS) observed in Batmand network in practice. The research investigates delay, packet loss, throughput and jitter as performance parameters (metrics) that may serve as options to improve the simplistic Batman algorithms route selection process. These metrics are essential for QoS in voice- and data-sensitive networks. Specific focus was given to delay and it is the metric added to Batmand. In addition the research examines how well the different applications such as voice and data are supported on the Batmand network under different routing scenarios. The research approach adopted in this dissertation was experimental and an indoor testbed was created to replicate the basic scenarios encountered in the rural environment. The essential characteristics found in the Mdumbi region of the Eastern Cape, South Africa, were taken as a case study in this dissertation. The testbed was used to compare the original Batman algorithm implemented as Batmand, referred to here as O-Batmand, routing protocol and the resultant Batmand version obtained from the addition of the delay-routing metric called modified Batmand (M-Batmand). The research produced a number of findings. As the number of hops increased the per-formance of the network decreased for both protocols. O-Batmand is well suited for the task of routing packets inside a wireless network. It is designed and works for voice packets and supports data services. This is also true for the M-Batmand implementation. M-Batmand was developed as an improvement to the O-Batmand implementation at the cost of increased complexity, experienced by the protocol through modifications of its route selection process. The modification involved adding network delay values to its route selection process. This addition resulted in a protocol that is delay sensitive; however, the overall performance gains were inexistent. The main conclusions drawn from this study are that O-Batmand cannot be modified to include additional metrics and be expected to improve its performance. Second conclusion is that M-Batmand did not improve the overall performance of the O-Batmand protocol. The addition of the delay metric actually hindered O-Batmand's performance to the extent that no overall performance gains were realised. Sources of performance degradations are: increased overhead, from added delay data, in the network control packets called originator messages (OGMs). M-Batmand performs calculation which O-Batmand did not increasing CPU cycle needs. Lastly upon further internal protocol investigation it is seen that the rate of route delay data updates is slower than the original metric used by the protocol. This creates route fluctuations as route selection process will change when the updated delay values are added and change again when there are not as the network obtains the updated delay data. Both protocols support voice and data, however, the results show that the quality of the network deteriorates in the testbed with increasing hops. This affects voice more so then it does data as routes become more unstable with each increasing hop. Further Batmand is best at supporting voice and data as it outperforms M-Batmand in the laboratory experiments conducted. This dissertation argues that while there may exist one or a combination of metrics amongst the researched list (delay, packet loss, throughput and jitter) that may actually improve the performance of the protocol, it is extremely hard to realize such gains in practice

    Building Realistic Mobility Models for Mobile Ad Hoc Networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP) model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR), destination-sequenced distance-vector routing (DSDV), and ad hoc n-demand distance vector routing (AODV). The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To conclude, it is possible to develop a range of techniques for modelling scenarios applicable to MANETs, and these simulation models could be utilised for the evaluation of routing protocols

    Cooperation in open, decentralized, and heterogeneous computer networks

    Get PDF
    Community Networks (CN) are naturally open and decentralized structures, that grow organically with the addition of heterogeneous network devices, contributed and configured as needed by their participants. The continuous growth in popularity and dissemination of CNs in recent years has raised the perception of a mature and sustainable model for the provisioning of networking services. However, because such infrastructures include uncontrolled entities with non delimited responsibilities, every single network entity does indeed represent a potential single-point of failure that can stop the entire network from working, and that no other entity can prevent or even circumvent. Given the open and decentralized nature of CNs, that brings together individuals and organizations with different and even conflicting economic, political, and technical interests, the achievement of no more than basic consensus on the correctness of all network nodes is challenging. In such environment, the lack of self-determination for CN participants in terms of control and security of routing can be regarded as an obstacle for growth or even as a risk of collapse. To address this problem we first consider deployments of existing Wireless CN and we analyze their technology, characteristics, and performance. We perform an experimental evaluation of a production 802.11an Wireless CN, and compare to studies of other Wireless CN deployments in the literature. We compare experimentally obtained throughput traces with path-capacity calculations based on well-known conflict graph models. We observe that in the majority of cases the path chosen by the employed BMX6 routing protocol corresponds with the best identified path in our model. We analyze monitoring and interaction shortcomings of CNs and address these with Network Characterization Tool (NCT), a novel tool that allows users to assess network state and performance, and improve their quality of experience by individually modifying the routing parameters of their devices. We also evaluate performance outcomes when different routing policies are in use. Routing protocols provide self-management mechanisms that allow the continuous operation of a Community Mesh Network (CMN). We focus on three widely used proactive mesh routing protocols and their implementations: BMX6, OLSR, and Babel. We describe the core idea behind these protocols and study the implications of these in terms of scalability, performance, and stability by exposing them to typical but challenging network topologies and scenarios. Our results show the relative merits, costs, and limitations of the three protocols. Built upon the studied characteristics of typical CN deployments, their requirements on open and decentralized cooperation, and the potential controversy on the trustiness of particular components of a network infrastructure, we propose and evaluate SEMTOR, a novel routing-protocol that can satisfy these demands. SEMTOR allows the verifiable and undeniable definition and distributed application of individually trusted topologies for routing traffic towards each node. One unique advantage of SEMTOR is that it does not require a global consensus on the trustiness of any node and thus preserves cooperation among nodes with even oppositional defined trust specification. This gives each node admin the freedom to individually define the subset, and the resulting sub-topology, from the whole set of participating nodes that he considers sufficiently trustworthy to meet their security, data-delivery objectives and concerns. The proposed mechanisms have been realized as a usable and open-source implementation called BMX7, as successor of BMX6. We have evaluated its scalability, contributed robustness, and security. These results show that the usage of SEMTOR for securing trusted routing topologies is feasible, even when executed on real and very cheap (10 Euro, Linux SoC) routers as commonly used in Community Mesh Networks.Las Redes Comunitarias (CNs) son estructuras de naturaleza abierta y descentralizada, que crecen orgánicamente con la adición de dispositivos de red heterogéneos que aportan y configuran sus participantes según sea necesario. Sin embargo, debido a que estas infraestructuras incluyen entidades con responsabilidades poco delimitadas, cada entidad puede representar un punto de fallo que puede impedir que la red funcione y que ninguna otra entidad pueda prevenir o eludir. Dada la naturaleza abierta y descentralizada de las CNs, que agrupa individuos y organizaciones con diferentes e incluso contrapuestos intereses económicos, políticos y técnicos, conseguir poco más que un consenso básico sobre los nodos correctos en la red puede ser un reto. En este entorno, la falta de autodeterminación para los participantes de una CN en cuanto a control y seguridad del encaminamiento puede considerarse un obstáculo para el crecimiento o incluso un riesgo de colapso. Para abordar este problema consideramos las implementaciones de redes comunitarias inalámbricas (WCN) y se analiza su tecnología, características y desempeño. Realizamos una evaluación experimental de una WCN establecida y se compara con estudios de otros despliegues. Comparamos las trazas de rendimiento experimentales con cálculos de la capacidad de los caminos basados en modelos bien conocidos del grafo. Se observa que en la mayoría de los casos el camino elegido por el protocolo de encaminamiento BMX6 corresponde con el mejor camino identificado en nuestro modelo. Analizamos las limitaciones de monitorización e interacción en CNs y los tratamos con NCT, una nueva herramienta que permite evaluar el estado y rendimiento de la red, y mejorar la calidad de experiencia modificando los parámetros de sus dispositivos individuales. También evaluamos el rendimiento resultante para diferentes políticas de encaminamiento. Los protocolos de encaminamiento proporcionan mecanismos de autogestión que hacen posible el funcionamiento continuo de una red comunitaria mesh (CMN). Nos centramos en tres protocolos de encaminamiento proactivos para redes mesh ampliamente utilizados y sus implementaciones: BMX6, OLSR y Babel. Se describe la idea central de estos protocolos y se estudian la implicaciones de éstos en términos de escalabilidad, rendimiento y estabilidad al exponerlos a topologías y escenarios de red típicos pero exigentes. Nuestros resultados muestran los méritos, costes y limitaciones de los tres protocolos. A partir de las características analizadas en despliegues típicos de redes comunitarias, y de las necesidades en cuanto a cooperación abierta y descentralizada, y la esperable divergencia sobre la confiabilidad en ciertos componentes de la infraestructura de red, proponemos y evaluamos SEMTOR, un nuevo protocolo de encaminamiento que puede satisfacer estas necesidades. SEMTOR permite definir de forma verificable e innegable, así como aplicar de forma distribuida, topologías de confianza individualizadas para encaminar tráfico hacia cada nodo. Una ventaja única de SEMTOR es que no precisa de consenso global sobre la confianza en cualquier nodo y por tanto preserva la cooperación entre los nodos, incluso con especificaciones de confianza definidas por oposición. Esto proporciona a cada administrador de nodo la libertad para definir el subconjunto, y la sub-topología resultante, entre el conjunto de todos los nodos participantes que considere dignos de suficiente confianza para cumplir con su objetivo y criterio de seguridad y entrega de datos. Los mecanismos propuestos se han realizado en forma de una implementación utilizable de código abierto llamada BMX7. Se ha evaluado su escalabilidad, robustez y seguridad. Estos resultados demuestran que el uso de SEMTOR para asegurar topologías de encaminamiento de confianza es factible, incluso cuando se ejecuta en routers reales y muy baratos utilizados de forma habitual en WCN.Postprint (published version

    The dynamic counter-based broadcast for mobile ad hoc networks

    Get PDF
    Broadcasting is a fundamental operation in mobile ad hoc networks (MANETs) crucial to the successful deployment of MANETs in practice. Simple flooding is the most basic broadcasting technique where each node rebroadcasts any received packet exactly once. Although flooding is ideal for its simplicity and high reachability it has a critical disadvantage in that it tends to generate excessive collision and consumes the medium by unneeded and redundant packets. A number of broadcasting schemes have been proposed in MANETs to alleviate the drawbacks of flooding while maintaining a reasonable level of reachability. These schemes mainly fall into two categories: stochastic and deterministic. While the former employs a simple yet effective probabilistic principle to reduce redundant rebroadcasts the latter typically requires sophisticated control mechanisms to reduce excessive broadcast. The key danger with schemes that aim to reduce redundant broadcasts retransmissions is that they often do so at the expense of a reachability threshold which can be required in many applications. Among the proposed stochastic schemes, is counter-based broadcasting. In this scheme redundant broadcasts are inhibited by criteria related to the number of duplicate packets received. For this scheme to achieve optimal reachability, it requires fairly stable and known nodal distributions. However, in general, a MANETs‟ topology changes continuously and unpredictably over time. Though the counter-based scheme was among the earliest suggestions to reduce the problems associated with broadcasting, there have been few attempts to analyse in depth the performance of such an approach in MANETs. Accordingly, the first part of this research, Chapter 3, sets a baseline study of the counter-based scheme analysing it under various network operating conditions. The second part, Chapter 4, attempts to establish the claim that alleviating existing stochastic counter-based scheme by dynamically setting threshold values according to local neighbourhood density improves overall network efficiency. This is done through the implementation and analysis of the Dynamic Counter-Based (DCB) scheme, developed as part of this work. The study shows a clear benefit of the proposed scheme in terms of average collision rate, saved rebroadcasts and end-to-end delay, while maintaining reachability. The third part of this research, Chapter 5, evaluates dynamic counting and tests its performance in some approximately realistic scenarios. The examples chosen are from the rapidly developing field of Vehicular Ad hoc Networks (VANETs). The schemes are studied under metropolitan settings, involving nodes moving in streets and lanes with speed and direction constraints. Two models are considered and implemented: the first assuming an unobstructed open terrain; the other taking account of buildings and obstacles. While broadcasting is a vital operation in most MANET routing protocols, investigation of stochastic broadcast schemes for MANETs has tended to focus on the broadcast schemes, with little examination on the impact of those schemes in specific applications, such as route discovery in routing protocols. The fourth part of this research, Chapter 6, evaluates the performance of the Ad hoc On-demand Distance Vector (AODV) routing protocol with a route discovery mechanism based on dynamic-counting. AODV was chosen as it is widely accepted by the research community and is standardised by the MANET IETF working group. That said, other routing protocols would be expected to interact in a similar manner. The performance of the AODV routing protocol is analysed under three broadcasting mechanisms, notably AODV with flooding, AODV with counting and AODV with dynamic counting. Results establish that a noticeable advantage, in most considered metrics can be achieved using dynamic counting with AODV compared to simple counting or traditional flooding. In summary, this research analysis the Dynamic Counter-Based scheme under a range of network operating conditions and applications; and demonstrates a clear benefit of the scheme when compared to its predecessors under a wide range of considered conditions

    Voice and rural wireless mesh community networks: a framework to quantify scalability and manage end-user smartphone battery consumption

    Get PDF
    Philosophiae Doctor - PhDCommunity wireless mesh initiatives are a pioneering option to cheap ‘last-mile’ access to network services for rural low-income regions primarily located in Sub-Saharan Africa and Developing Asia. However, researchers have criticized wireless mesh networks for their poor scalability; and scalability quantification research has mostly consisted of modularization of per-node throughput capacity behaviour. A scalability quantification model to design wireless mesh networks to provide adequate quality of service is lacking. However, scalability quantification of community mesh networks alone is inadequate because rural users need affordable devices for access; and they need to know how best to use them. Low-cost low-end smartphones offer handset affordability solutions but require smart management of their small capacity battery. Related work supports the usage of Wi-Fi for communication because it is shown to consume less battery than 2G, 3G or Bluetooth. However, a model to compare Wi-Fi battery consumption amongst different low-end smartphones is missing, as is a comparison of different over-the-top communication applications

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g
    corecore