3,056 research outputs found

    Evaluation of a Bundling Technique for Parallel Coordinates

    Full text link
    We describe a technique for bundled curve representations in parallel-coordinates plots and present a controlled user study evaluating their effectiveness. Replacing the traditional C^0 polygonal lines by C^1 continuous piecewise Bezier curves makes it easier to visually trace data points through each coordinate axis. The resulting Bezier curves can then be bundled to visualize data with given cluster structures. Curve bundles are efficient to compute, provide visual separation between data clusters, reduce visual clutter, and present a clearer overview of the dataset. A controlled user study with 14 participants confirmed the effectiveness of curve bundling for parallel-coordinates visualization: 1) compared to polygonal lines, it is equally capable of revealing correlations between neighboring data attributes; 2) its geometric cues can be effective in displaying cluster information. For some datasets curve bundling allows the color perceptual channel to be applied to other data attributes, while for complex cluster patterns, bundling and color can represent clustering far more clearly than either alone

    Ultraprecise Single Point Inverted Cutting Strategies for Multi-axis Fabrication of Right Triangular Prismatic Retroreflectors

    Get PDF
    The optical phenomenon of retroreflection (RR) is described as light rays contacting a surface and being redirected back to their originating source. While applications are many and varied, their primary focus is safety in low-light conditions, and the focus of this research is toward automotive applications. Few geometric shapes are capable of retroreflection. Among them are the lens-and-mirror, and cube corner geometry; however, the right triangular prism (RTP) has been introduced as a viable alternative. This study demonstrates a more efficient fabrication technology when compared to current industry practices. The ultraprecise single point inverted cutting (USPIC) technology was envisioned as a combination of diamond turning and multi-axis machining. The unique cutting kinematics of USPIC required the development of dedicated tooling and a postprocessor for machine automation. Experimental results have demonstrated both the feasibility of this approach, and that RTP arrays fabricated by this technology outperform those fabricated through conventional means

    Visualizing Spatio-Temporal data

    Get PDF
    The amount of spatio-temporal data produced everyday has sky rocketed in the recent years due to the commercial GPS systems and smart devices. Together with this, the need for tools and techniques to analyze this kind of data have also increased. A major task of spatio-temporal data analysis is to discover relationships and patterns among spatially and temporally scattered events. However, most of the existing visualization techniques implement a top-down approach i.e, they require prior knowledge of existing patterns. In this dissertation, I present my novel visualization technique called Storygraph which supports bottom-up discovery of patterns. Since Storygraph presents and integrated view, analysis of events can be done with losing either of time or spatial contexts. In addition, Storygraph can handle spatio-temporal uncertainty making it ideal for data being extracted from text. In the subsequent chapters, I demonstrate the versatility and the effectiveness of the Storygraph along with case studies from my published works. Finally, I also talk about edge bundling in Storygraph to enhance the aesthetics and improve the readability of Storygraph

    DEPLOYING, IMPROVING AND EVALUATING EDGE BUNDLING METHODS FOR VISUALIZING LARGE GRAPHS

    Get PDF
    A tremendous increase in the scale of graphs has been witnessed in a wide range of fields, which demands efficient and effective visualization techniques to assist users in better understandings of large graphs. Conventional node-link diagrams are often used to visualize graphs, whereas excessive edge crossings can easily incur severe visual clutter in the node-link diagram of a large graph. Edge bundling can effectively remedy visual clutter and reveal high-level graph structures. Although significant efforts have been devoted to developing edge bundling, three challenging problems remain. First, edge bundling techniques are often computationally expensive and are not easy to deploy for web-based applications. The state-of-the-art edge bundling methods often require special system supports and techniques such as high-end GPU acceleration for large graphs, which makes these methods less portable, especially for ubiquitous mobile devices. Second, the quantitative quality of edge bundling results is barely assessed in the literature. Currently, the comparison of edge bundling mainly focuses on computational performance and perceptual results. Third, although the family of edge bundling techniques has a rich set of bundling layout, there is a lack of a generic method to generate different styles of edge bundling. In this research, I aim to address these problems and have made the following contributions. First, I provide an efficient framework to deploy edge bundling for web-based platforms by exploiting standard graphics hardware functions and libraries. My framework can generate high-quality edge bundling results on web-based platforms, and achieve a speedup of 50X compared to the previous state-of-the-art edge bundling method on a graph with half of a million edges. Second, I propose a new moving least squares based approach to lower the algorithm complexity of edge bundling. In addition, my approach can generate better bundling results compared to other methods based on a quality metric. Third, I provide an information-theoretic metric to evaluate the edge bundling methods. I leverage information theory in this metric. With my information-theoretic metric, domain users can choose appropriate edge bundling methods with proper parameters for their applications. Last but not least, I present a deep learning framework for edge bundling visualizations. Through a training process that learns the results of a specific edge bundling method, my deep learning framework can infer the final layout of the edge bundling method. My deep learning framework is a generic framework that can generate the corresponding results of different edge bundling methods. Adviser: Hongfeng Y

    Conditional Parallel Coordinates

    Full text link
    Parallel Coordinates are a popular data visualization technique for multivariate data. Dating back to as early as 1880 PC are nearly as old as John Snow's famous cholera outbreak map of 1855, which is frequently regarded as a historic landmark for modern data visualization. Numerous extensions have been proposed to address integrity, scalability and readability. We make a new case to employ PC on conditional data, where additional dimensions are only unfolded if certain criteria are met in an observation. Compared to standard PC which operate on a flat set of dimensions the ontology of our input to Conditional Parallel Coordinates is of hierarchical nature. We therefore briefly review related work around hierarchical PC using aggregation or nesting techniques. Our contribution is a visualization to seamlessly adapt PC for conditional data under preservation of intuitive interaction patterns to select or highlight polylines. We conclude with intuitions on how to operate CPC on two data sets: an AutoML hyperparameter search log, and session results from a conversational agent.Comment: 5 pages, 8 figures, VIS 2019 Short Paper

    A boundary element regularised Stokeslet method applied to cilia and flagella-driven flow

    Full text link
    A boundary element implementation of the regularised Stokeslet method of Cortez is applied to cilia and flagella-driven flows in biology. Previously-published approaches implicitly combine the force discretisation and the numerical quadrature used to evaluate boundary integrals. By contrast, a boundary element method can be implemented by discretising the force using basis functions, and calculating integrals using accurate numerical or analytic integration. This substantially weakens the coupling of the mesh size for the force and the regularisation parameter, and greatly reduces the number of degrees of freedom required. When modelling a cilium or flagellum as a one-dimensional filament, the regularisation parameter can be considered a proxy for the body radius, as opposed to being a parameter used to minimise numerical errors. Modelling a patch of cilia, it is found that: (1) For a fixed number of cilia, reducing cilia spacing reduces transport. (2) For fixed patch dimension, increasing cilia number increases the transport, up to a plateau at 9×99\times 9 cilia. Modelling a choanoflagellate cell it is found that the presence of a lorica structure significantly affects transport and flow outside the lorica, but does not significantly alter the force experienced by the flagellum.Comment: 20 pages, 7 figures, postprin

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationship between entities in real-world systems with a simple graph is a standard approach. However, realityis better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model hasemerged from the field of complex systems. This model can be applied to a wide range of real-world data sets. Examples ofmultilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domainof graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs.This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only forresearchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as wellas those developing systems across application domains. We have explored the visualization literature to survey visualizationtechniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within applicationdomains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future researchdirections for addressing them

    DimLift: Interactive Hierarchical Data Exploration through Dimensional Bundling

    Get PDF
    The identification of interesting patterns and relationships is essential to exploratory data analysis. This becomes increasingly difficult in high dimensional datasets. While dimensionality reduction techniques can be utilized to reduce the analysis space, these may unintentionally bury key dimensions within a larger grouping and obfuscate meaningful patterns. With this work we introduce DimLift , a novel visual analysis method for creating and interacting with dimensional bundles . Generated through an iterative dimensionality reduction or user-driven approach, dimensional bundles are expressive groups of dimensions that contribute similarly to the variance of a dataset. Interactive exploration and reconstruction methods via a layered parallel coordinates plot allow users to lift interesting and subtle relationships to the surface, even in complex scenarios of missing and mixed data types. We exemplify the power of this technique in an expert case study on clinical cohort data alongside two additional case examples from nutrition and ecology.acceptedVersio
    • …
    corecore