246 research outputs found

    Comparison of CSMA based MAC protocols of wireless sensor networks

    Full text link
    Energy conservation has been an important area of interest in Wireless Sensor networks (WSNs). Medium Access Control (MAC) protocols play an important role in energy conservation. In this paper, we describe CSMA based MAC protocols for WSN and analyze the simulation results of these protocols. We implemented S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator which unlike other simulators simulates the same code running on real hardware. Previous surveys mainly focused on the classification of MAC protocols according to the techniques being used or problem dealt with and presented a theoretical evaluation of protocols. This paper presents the comparative study of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a particular environment and supports the arguments with the simulation results. The comparative study can be used to find the best suited MAC protocol for wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2, April 201

    Katakan tidak pada rasuah

    Get PDF
    Isu atau masalah rasuah menjadi topik utama sama ada di peringkat antarabangsa mahupun di peringkat dalam negara. Pertubuhan Bangsa- bangsa Bersatu menegaskan komitmen komuniti antarabangsa bertegas untuk mencegah dan mengawal rasuah melalui buku bertajuk United Nations Convention against Corruption. Hal yang sama berlaku di Malaysia. Melalui pernyataan visi oleh mantan Perdana Menteri Malaysia, Tun Dr. Mahathir bin Mohamed memberikan indikasi bahawa kerajaan Malaysia komited untuk mencapai aspirasi agar Malaysia dikenali kerana integriti dan bukannya rasuah. Justeru, tujuan penulisan bab ini adalah untuk membincangkan rasuah dari beberapa sudut termasuk perbincangan dari sudut agama Islam, faktor-faktor berlakunya gejala rasuah, dan usaha-usaha yang dijalankan di Malaysia untuk membanteras gejala rasuah. Perkara ini penting bagi mengenalpasti penjawat awam menanamkan keyakinan dalam melaksanakan tanggungjawab dengan menghindari diri daripada rasuah agar mereka sentiasa peka mengutamakan kepentingan awam

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table

    Evaluation of WiseMAC and extensions onwireless sensornodes

    Get PDF
    In the past five years, many energy-efficient medium access protocols for all kinds of wireless networks (WSNs) have been proposed. Some recently developed protocols focus on sensor networks with low traffic requirements are based on so-called preamble sampling or low-power listening. The WiseMAC protocol is one of the first of this kind and still is one of the most energy-efficient MAC protocols for WSNs with low or varying traffic requirements. However, the high energy-efficiency of WiseMAC has shown to come at the cost of a very limited maximum throughput. In this paper, we evaluate the properties and characteristics of a WiseMAC implementation in simulation and on real sensor hardware. We investigate on the energy-consumption of the prototype using state-of-the-art evaluation methodologies. We further propose and examine an enhancement of the protocol designed to improve the traffic-adaptivity of WiseMAC. By conducting both simulation and real-world experiments, we show that the WiseMAC extension achieves a higher maximum throughput at a slightly increased energy cost both in simulation and real-world experiment

    Distributed Time Division Multiple Access (DTDMA) Medium Access Control Protocol For Wireless Sensor Networks [TK7872.D48 W872 2008 f rb].

    Get PDF
    Rangkaian sensor tanpa wayar menerima perhatian yang memberangsangkan sejak beberapa tahun yang lalu disebabkan oleh peningkatan permintaan terhadap perisian kadar rendah, murah dan menjimatkan tenaga seperti operasi perkilangan, ketenteraan, kesihatan, pengawasan alam sekitar, sekuriti, operasi penyelamatan dan komunikasi tanpa wayar. Wireless Sensor Networks (WSNs) received tremendous attention over the last few years due to increasing demand for low data rate, low-cost and low power applications in industries like factory automation, military, health and hospitality,environment monitoring, security, search and rescue, and wireless communications

    Traffic-Adaptive and Link-Quality-Aware Communication in Wireless Sensor Networks

    Get PDF
    This paper is a summary of the main contributions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the communication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with contributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is introduced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a methodology for robust, reliable and accurate software-based energy-estimation, which is calculated at network runtime on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adaptively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communications in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the performance degrading effects of packet corruption and transmission failures when transmitting data over multiple hops. The performance of all developed protocols are evaluated on a self-developed real-world WSN testbed and achieve superior performance over selected existing approaches, especially where traffic load and channel conditions are suspect to rapid variations over tim

    Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

    Get PDF
    The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay

    A proposed energy efficient medium access control protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Network (WSN) nodes are broadly used in various sectors nowadays. WSN nodes experience a lot of problems that impact on battery life for sensor node such as, overhearing, collision, hidden node, idle listening, schedule drifts, and high latency. Moreover, WSN nodes are strongly dependent on its limited battery power, and replenishing it again is difficult as nodes are organized in an ad-hoc manner. Energy consumption is the most vital factor to determine the life of a sensor network because sensor nodes are driven by low battery resources. An approach to conserve energy in WSN nodes is to carefully design its Medium Access Control (MAC) protocol. Several previous work has been carried out to mitigate many problems that impact on battery life for sensor node such as overhearing, collision, and hidden node. This dissertation attempts to design, a hybrid Energy-Efficient MAC (EEMAC) protocol to address the energy issues that are related to WSN nodes. This protocol aims to reduce idle listening times as well as lowering the latency time thus reducing the energy consumption. The proposed protocol has been developed and analysed using the ns-2 simulator. A mathematical model was used to verify and prove the efficiency of the proposed protocol. We have compared our proposed EE-MAC protocol with the existing contention-based IEEE 802.11 PSM protocol. The simulation results illustrate EE-MAC has achieved better energy conservation than the IEEE 802.11 PSM protocol
    corecore