76 research outputs found

    Evaluation of WiseMAC and extensions onwireless sensornodes

    Get PDF
    In the past five years, many energy-efficient medium access protocols for all kinds of wireless networks (WSNs) have been proposed. Some recently developed protocols focus on sensor networks with low traffic requirements are based on so-called preamble sampling or low-power listening. The WiseMAC protocol is one of the first of this kind and still is one of the most energy-efficient MAC protocols for WSNs with low or varying traffic requirements. However, the high energy-efficiency of WiseMAC has shown to come at the cost of a very limited maximum throughput. In this paper, we evaluate the properties and characteristics of a WiseMAC implementation in simulation and on real sensor hardware. We investigate on the energy-consumption of the prototype using state-of-the-art evaluation methodologies. We further propose and examine an enhancement of the protocol designed to improve the traffic-adaptivity of WiseMAC. By conducting both simulation and real-world experiments, we show that the WiseMAC extension achieves a higher maximum throughput at a slightly increased energy cost both in simulation and real-world experiment

    Traffic-Adaptive and Link-Quality-Aware Communication in Wireless Sensor Networks

    Get PDF
    This paper is a summary of the main contributions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the communication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with contributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is introduced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a methodology for robust, reliable and accurate software-based energy-estimation, which is calculated at network runtime on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adaptively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communications in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the performance degrading effects of packet corruption and transmission failures when transmitting data over multiple hops. The performance of all developed protocols are evaluated on a self-developed real-world WSN testbed and achieve superior performance over selected existing approaches, especially where traffic load and channel conditions are suspect to rapid variations over tim

    WiseMAC protocol for wireless sensor network-an energy efficient protocol

    Get PDF
    Wireless Sensor Networks are very useful in case of distance or unreachable areas. WSN are having large number of nodes (sensors) which are randomly distributed. These sensors are primarily used to process data and connected through wireless channel. The processing, transmission and reception and sensing the channel need power. This power is given to nodes by their batteries. So the problem in front of us is to reduce power consumption by these nodes. Some areas are very far and some areas are unreachable like valley or hill areas. Thus it is not possible in some cases to replace or change the battery. Our focus is to make a protocol which makes these nodes work with lesser battery power. There are so many MAC layer protocols which work for this purpose but they too are not energy efficient. These protocols are based on CSMA. Here in this report we have proposed WiseMAC protocol which is also based on CSMA but with preamble sampling. This protocol shows very good reduction in power consumption. For this we used some more schemes with the existing WiseMAC protocol, these schemes are more bit and extended more bit. Our WiseMAC protocol is an asynchronous protocol and works very well in case of adaptive traffic conditions. To make WiseMAC energy efficient we are here focusing to reduce preamble sampling duration and this done with reducing duty cycle and contention window of our proposed protocol. As we have implemented Adaptive WiseMAC protocol so we are focusing that this will help in body are network (BAN) for medical purposes. Although a lot of works have been done but still more work has to be don

    On the Medium Access Control Protocols Suitable for Wireless Sensor Networks – A Survey

    Get PDF
    A MAC (Medium Access Control) protocol has direct impact on the energy efficiency and traffic characteristics of any Wireless Sensor Network (WSN). Due to the inherent differences in WSN’s requirements and application scenarios, different kinds of MAC protocols have so far been designed especially targeted to WSNs, though the primary mode of communications is wireless like any other wireless network. This is the subject topic of this survey work to analyze various aspects of the MAC protocols proposed for WSNs. To avoid collision and ensure reliability, before any data transmission between neighboring nodes in MAC layer, sensor nodes may need sampling channel and synchronizing. Based on these needs, we categorize the major MAC protocols into three classes, analyze each protocol’s relative advantages and disadvantages, and finally present a comparative summary which could give a snapshot of the state-of-the-art to guide other researchers find appropriate areas to work on. In spite of various existing survey works, we have tried to cover all necessary aspects with the latest advancements considering the major works in this area

    2nd Joint ERCIM eMobility and MobiSense Workshop

    Get PDF

    The improvements of power management for clustered type large scope wireless sensor networks2010

    Full text link
    Fuente Aragón, PDL. (2010). The improvements of power management for clustered type large scope wireless sensor networks2010. http://hdl.handle.net/10251/10244.Archivo delegad

    Energy-Efficient Communication in Wireless Networks

    Get PDF
    This chapter describes the evolution of, and state of the art in, energy‐efficient techniques for wirelessly communicating networks of embedded computers, such as those found in wireless sensor network (WSN), Internet of Things (IoT) and cyberphysical systems (CPS) applications. Specifically, emphasis is placed on energy efficiency as critical to ensuring the feasibility of long lifetime, low‐maintenance and increasingly autonomous monitoring and control scenarios. A comprehensive summary of link layer and routing protocols for a variety of traffic patterns is discussed, in addition to their combination and evaluation as full protocol stacks

    Protocol assessment issues in low duty cycle sensor networks: The switching energy

    Get PDF
    Energy assessment of MAC protocols for wireless sensor networks is generally based on the times of transmit, receive and sleep modes. The switching energy between two consecutive states is generally considered negligible with respect to them. Although such an assumption is valid for traditional wireless ad hoc networks, is this assumption valid also for low duty cycle wireless sensor networks? The primary objective of this work is to shed some light on relationships between node switching energy and node duty cycle over the total energy consumption. In order to achieve the target, initially, we revisit the energy spent in each state and transitions of three widespread hardware platforms for wireless sensor networks by direct measurements on the EYES node. Successively, we apply the values obtained to the SMAC protocol by using the OmNet++ simulator
    corecore